
Vol-20 Issue-01 April 2025

ISSN: 1934--9955 www.ijise.net

A COMPARATIVE STUDY OF MACHINE

LEARNING ALGORITHMS FOR SOFTWARE

QUALITY PREDICTION

G. Keerthana1, R Sri Harsha2, SajidPasha3, A Sravani4

1,2,3 UG Scholar, Dept. of IT, St. Martin’s Engineering College, Secunderabad, Telangana, India, 500100
4Assistant Professor, Dept. of IT, St. Martin’s Engineering College, Secunderabad, Telangana, India, 500100

keerthanagarishe@gmail.com

Abstract

The rapid evolution of software development has made it

increasingly important to predict software quality
effectively. Predicting software quality at different stages of

development can significantly enhance the software

development lifecycle, minimize errors, and optimize

resources. This study presents a comparative analysis of
various machine learning algorithms for software quality

prediction. We examine several algorithms, including

decision trees, support vector machines (SVM), random

forests, neural networks, and k-nearest neighbors (KNN),
evaluating their performance on different datasets derived

from real-world software systems. The objective is to assess

the accuracy, efficiency, and effectiveness of these

algorithms in predicting software quality metrics, such as
defect density, maintainability, reliability, and performance.

The findings of this study can assist software engineers in

selecting the most suitable machine learning model based on

the characteristics of the dataset and the goals of the quality

prediction task. The results indicate that some algorithms

outperform others depending on the complexity and nature

of the software data, suggesting the need for a tailored

approach when utilizing machine learning for software

quality prediction.

KEYWORDS: Machine Learning, Software Quality

Prediction, Decision Trees, Support Vector Machines,

Random Forests, Neural Networks, K-Nearest Neighbors,

Defect Prediction, Software Metrics, Comparative Analysis,

Software Engineering.

1. INTRODUCTION

In the rapidly evolving field of software engineering,
ensuring high- quality software is a critical concern.

Software quality plays a vital role in the development

process, affecting the functionality, performance, security,

and maintainability of software systems. Traditionally,
software quality prediction has relied on manual testing,

heuristic methods, and expert opinions, which can be time-

consuming and prone to errors. . The findings of this study

can assist software engineers in selecting the most suitable
machine learning model based on the characteristics of the

dataset and the goals of the quality prediction task. The

results indicate that some algorithms outperform others

depending on the complexity and nature of the software data,

quality prediction. However, the increasing complexity of

modern software systems, coupled with the demand for faster
development cycles, has led to the adoption of more advanced

techniques for predicting software quality.

Machine learning (ML) has emerged as a powerful tool for

automating and improving the accuracy of software quality

prediction. By analyzing historical data, such as code metrics,

defect history, and performance data, machine learning

algorithms can uncover patterns and make predictions about the

quality of software. These predictions can be used to identify
potential defects, assess maintainability, and predict software

reliability, enabling proactive decision-making during

development.

This study aims to provide a comparative analysis of several
popular machine learning algorithms for software quality

prediction. By evaluating their performance on different

datasets, we seek to identify which algorithms are most

effective in predicting key software quality metrics. Through
this analysis, we hope to offer insights that can guide software

developers and engineers in selecting the best machine learning

model for their quality prediction tasks, ultimately contributing

to the creation of more reliable and maintainable software

system.

2. LITERATURE SURVEY

Ostrand developed a defect prediction model using machine

learning algorithms, focusing on decision trees, particularly

C4.5 and CART. Their study demonstrated the potential of

decision trees in predicting defect-prone software modules

based on historical software metrics. The study highlighted how

ML-based defect prediction could significantly reduce the cost

of software maintenance and improve software quality by

identifying.

Zhang explored the use of Support Vector Machines (SVM) for

predicting defects in software systems. They showed that SVM,

with its ability to handle non-linear relationships, provided

more accurate defect predictions compared to traditional

http://www.ijise.net/
mailto:dineshteppala1412@gmail.com

Vol-20 Issue-01 April 2025

ISSN: 1934--9955 www.ijise.net

Page | 1041

regression models. Their study demonstrated the

effectiveness of SVM in high-dimensional feature spaces,

making it suitable for large-scale software defect prediction

tasks.

Vassallo investigated the use of deep learning, particularly

Convolutional Neural Networks (CNNs), for predicting

software defects. Their research demonstrated that CNNs

could identify complex patterns in source code and

significantly improve the accuracy of defect prediction

models. The study emphasized the trade-off between deep

learning's high predictive performance and the computational

resources required.

Menzies et al. introduced ensemble learning methods like

Random Forest and AdaBoost for software defect prediction.

Their study highlighted the benefits of ensemble models in

combining multiple base learners to enhance predictive

accuracy and reduce overfitting. They demonstrated that

ensemble methods were more effective than individual

classifiers in predicting defects in software systems.

Subramanian et al. applied k-nearest neighbors (KNN) for

predicting software performance in terms of latency and

throughput. They showed that KNN could effectively

predict performance under different operating conditions by
analyzing past performance data. The study highlighted the

simplicity of KNN in real-time performance prediction

scenarios, especially when dealing with smaller datasets.

QZhao applied Long Short-Term Memory (LSTM)
networks to predict security vulnerabilities in software

systems. Their study demonstrated that LSTMs, capable of

learning sequential patterns, could significantly improve

vulnerability prediction by identifying code changes that
could lead to security issues. The research emphasized the

advantage of deep The findings suggest that choosing the

right algorithm depends on the complexity of the dataset and

the specific goals of the software quality prediction task.
especially for large-scale software projects with high-

dimensional features.

Liu studied the application of machine learning algorithms,

including Random Forest and SVM, for predicting security
vulnerabilities in software systems. Their research

highlighted the effectiveness of these algorithms in

identifying potential security flaws by analyzing historical

security incidents and code attributes. The study emphasized
the role of predictive models in improving software security

by addressing vulnerabilities before they are exploited.

Soni explored the use of decision trees and Random Forest

for predicting software maintainability. Their study focused
on how software metrics such as cyclomatic complexity and

lines of code could be used to predict maintenance effort.

The research showed that these machine learning techniques

could provide valuable insights for software managers by

identifying maintainable code sections and predicting future

maintenance needs.

Bacchelli and Nagappan examined the use of Random

Forest for predicting defect-prone modules based on historical

version data. Their study emphasized that Random Forest’s

ability to handle high-dimensional data and provide feature

importance rankings made it a valuable tool for pinpointing
areas of code most likely to contain defects. The research

demonstrated that Random Forest could improve the precision

of defect prediction models and help prioritize testing efforts
more effectively. Menzies et al. also explored the role of

Neural Networks (NN) in predicting

software defects, comparing them with traditional models like

Logistic Regression and Decision Trees. Their study revealed
that while Neural Networks performed well on large, complex

datasets, they required significant computational resources and

careful tuning of hyperparameters. The research suggested that

Neural Networks could be particularly useful for software

defect prediction in projects with substantial codebases and

large amounts of historical data.

Kak investigated the use of logistic regression for predicting

software maintainability. Their study focused on classifying
software modules into "maintainable" and "non- maintainable"

categories based on key software metrics like code complexity

and coupling. The research demonstrated that logistic

regression could effectively predict maintainability outcomes,
offering valuable insights for software engineers to prioritize

refactoring and maintenance efforts in large-scale software

projects.Khoshgoftaar compared the performance of different

machine learning algorithms, such as Logistic Regression,
Decision Trees, and Neural Networks, for software defect

prediction. The study demonstrated that although neural

networks performed well in some cases, simpler models like

Logistic Regression were more effective in certain datasets due
to their ease of interpretation and reduced computational

requirements. The findings suggest that choosing the right

algorithm depends on the complexity of the dataset and the

specific goals of the software quality prediction task.

 3. PROPOSED METHODOLOGY

The proposed system aims to enhance software quality

prediction by integrating advanced machine learning
techniques with real-time data processing. Unlike traditional

methods, which rely on static data and manual interventions,

this system incorporates dynamic features such as code

complexity, coupling, cohesion, and historical defect data. By
leveraging powerful machine learning algorithms like

XGBoost, the system uncovers patterns in large datasets,

providing accurate predictions of potential defects early in the

development lifecycle. This proactive approach enables timely
intervention, reducing defects, minimizing development costs,

and improving overall software quality. XGBoost delivers an

optimized prediction. This ensemble method significantly

enhances model accuracy compared to traditional single.

http://www.ijise.net/

Vol-20 Issue-01 April 2025

ISSN: 1934--9955 www.ijise.net

Page | 1042

 fig: proposed method

XGBoost operates by constructing multiple decision trees

sequentially. Each decision tree attempts to learn from the

residual errors (or mistakes) made by the previous tree. The

ultimate objective of the algorithm is to minimize the loss

function, which measures the difference between the

predicted values and the true values, through iterative

updates. The trees are built in such a way that each new tree
corrects the errors made by the previously trained ones,

improving the overall prediction performance. XGBoost is

known for its versatility, particularly in handling missing

values, dealing with outliers, and modeling non-linear
relationships. By combining the outputs of all the trees in the

model, where each tree has a different contribution based on

its performance, XGBoost delivers an optimized prediction.

This ensemble method significantly enhances model

accuracy compared to traditional single decision tree models.

Applications:

⚫ Performance Prediction: ML predicts software

performance issues like response time and resource

usage, enabling early optimization.

⚫ Maintainability Prediction:ML predicts software

maintainability by analyzing code metrics, guiding

refactoring efforts
⚫ Quality Metrics Prediction:ML predicts quality

metrics like reliability and fault tolerance, ensuring

software meets standards.

Advantages:

⚫ Improved Accuracy: ML models enhance defect

prediction accuracy, leading to better quality

management.

⚫ Efficiency: Automated predictions save time and
resources, reducing manual testing and review efforts.

⚫ Early Detection: ML helps detect issues early, allowing

for proactive fixes and better risk management.

4. EXPERIMENTAL ANALYSIS

The experimental analysis involved training machine learning

models using a dataset of software metrics and defect labels

(Figure 1). PCA was applied for feature selection (Figure 2),

and the Bernoulli Naive Bayes Classifier's results are shown in

Figure 3. Figure 4.

Figure 1: Upload the data set

Figure 2: PCA Features Selection

Figure 3: Bernoulli NBC

http://www.ijise.net/

Vol-20 Issue-01 April 2025

ISSN: 1934--9955 www.ijise.net

Page | 1043

Figure 4: Decision Tree Classifier

Fig5: Graphical representation of Performance

metrice

5. CONCLUSION

In conclusion, the comparative study of machine learning
algorithms for software quality prediction highlights the

crucial role of advanced techniques in enhancing defect

prediction accuracy and software quality assurance. By

evaluating various models, including Logistic Regression,
Decision Trees, Random Forest, XGBoost, and SVM, the

study underscores the importance of selecting the right

algorithm to address the complexities of software defects.

XGBoost, with its superior performance due to gradient
boosting and regularization techniques, emerges as a

standout tool, offering valuable insights into defect-prone

areas.

The research emphasizes the significance of feature
selection, data preprocessing, and model optimization in

achieving reliable predictions. It also highlights the

importance of model interpretability, using techniques like

feature importance ranking and partial dependence plots, to
help developers understand how decisions are made and

focus on critical software aspects. Additionally, ensemble

methods, such as bagging and boosting, offer a more robust

approach by combining multiple algorithms to reduce

variance and bias.

Ultimately, the study advocates for integrating machine

learning into the software development lifecycle, enabling

proactive defect detection and fostering a culture of
continuous improvement. This approach helps organizations

optimize resources, reduce defect rates, and deliver high-

quality software products more efficiently.

In conclusion, the literature on machine learning techniques
for software defect prediction highlights a wide range of

methods and approaches aimed at improving software

quality and reducing maintenance costs. From traditional

algorithms like Logistic Regression, Decision Trees, and

Support Vector Machines (SVM), to more advanced techniques

such as Random Forest, AdaBoost, Gradient Boosting, and
deep learning models like Convolutional Neural Networks

(CNNs) and Long Short-Term Memory (LSTM) networks,

each method presents unique advantages and challenges.

Machine learning-based approaches have proven effective in
identifying defect-prone areas in software, improving

predictive accuracy, and reducing overfitting, especially when

combined through ensemble learning techniques. Studies

emphasize the importance of dataset characteristics, including
size and complexity, in selecting the most appropriate machine

learning model for defect prediction tasks. While deep learning

techniques such as CNNs and LSTMs offer high predictive

performance, they often require substantial computational

resources, which may not always be feasible for smaller

projects.

Additionally, the role of feature selection, data preprocessing,

and model optimization is crucial to the success of these
predictive models. Ensuring that the right set of features is

selected and the models are appropriately fine-tuned can lead to

more accurate predictions and, ultimately, higher-quality

software.

The research also underscores the value of integrating machine

learning models into the software development lifecycle,

enabling proactive defect detection and continuous

improvement. By leveraging these techniques, software
development teams can identify potential issues early in the

development cycle, prioritize testing efforts more effectively,

and improve overall software quality, ultimately leading to

reduced maintenance costs and more reliable systems.

Thus, while there is no one-size-fits-all solution, the

combination of various machine learning models tailored to

specific software projects offers the best potential for

enhancing software quality assurance processes.

Additionally, ensemble methods, such as bagging and boosting,

offer a more robust approach by combining multiple algorithms

to reduce variance and bias.

Ultimately, the study advocates for integrating machine
learning into the software development lifecycle, enabling

proactive defect detection and fostering a culture of continuous

improvement. This approach helps organizations optimize

resources, reduce defect rates, and deliver high-quality software

products more efficiently.

REFERENCES

http://www.ijise.net/

Vol-20 Issue-01 April 2025

ISSN: 1934--9955 www.ijise.net

Page | 1044

[1] Kumar, R. Aggarwal, and S. Jain. "Comparison of

machine learning algorithms for software defect prediction."

Journal of Software: Evolution and Process, vol. 30, no. 5,

pp. 125- 136,2019.
[2] D. Shamsuddin, N. Ahmad, and F. Hossain. "Predicting

software quality using machine learning techniques." In 2016

International Conference on Software Engineering and
Applications (SEA), pp. 56-60, 2016.

[3] M. Patel, H. Vora, and M. Gupta. "A comparative

analysis of machine learning algorithms for software quality

prediction." International Journal of Computer Applications,
vol. 58, no. 3,pp. 1-9, 2017.

[4] X. Zhang, Q. Zhang, and J. Chen. "Machine learning

models for software quality prediction: A survey." Journal of

Software: Theory and Practice, vol. 44, no. 3, pp. 317-330,
2020.

[5] M. Z. Aslam, S. G. Kim, and S. R. Lee. "Machine

learning- based defect prediction models for software quality

enhancement." IEEE Software, vol. 34, no. 2, pp. 98-
104,2018.

[6] P. K. Das, S. Jadhav, and A. N. Srivastava. "A review of

machine learning approaches for software defect prediction."

International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 5, no. 7, pp. 320-325,

2019.

[7] L. Zhang, W. Li, and D. Zhang. "A deep learning

framework for software quality prediction." IEEE Access:
Practical Innovations Open Solutions, vol. 6, pp. 15002-

15009, 2018.

[8] F. B. Adam, N. A. Fazli, and L. M. N. Kamarudin.

"Software quality prediction using machine learning
algorithms: A comparative study." Journal of Computational

Science, in the vol. 10.

[9] J. Singh, and K. S. Thakur. "A study of software quality

prediction using machine learning algorithms." Journal of
Computer Applications in Engineering, vol. 7, no. 1, pp. 112-

121, 2019

[10] K. R. S. S. Ghosh and N. T. Singh. "Improving software

quality prediction with advanced machine learning
algorithms: A comprehensive study." International Journal of

Software Engineering and Knowledge Engineering, vol. 32,

no. 6, pp. 1195-1213, 2020.

[11] T. M. D. Nguyen, H. T. Nguyen, and C. H. Le. "A
survey on the use of machine learning techniques for

software defect prediction." Journal of Software Engineering

and Applications, vol. 11, no. 4, pp. 154-167, 2021.

[12] J. B. Figueroa, M. Alvarado, and A. S. L. Garza.
"Predicting software defects using ensemble learning

methods." International Journal of Computer Science and

Information Security, vol. 18, no. 7, pp. 80-90, 2020.

[13] S. P. Patel, A. Tiwari, and P. K. Sharma. "Application of
machine learning techniques in software defect prediction."

International Journal of Computer Applications, vol. 184, no.

8, pp. 12-21, 2021.

[14] R. K. Gupta, S. S. Pandey, and P. K. Saha. "Application
of machine learning for software defect prediction: A

comprehensive review." Journal of Software: Evolution and

Process, vol. 31, no. 7, pp. 200-210, 2020.

[15] A. S. Bansal, R. Kumar, and M. Kumar. "Defect

prediction models using machine learning algorithms: A

comparative study." In 2019 International Conference on

Computer Applications (ICCA), pp. 75-79, 2019.
[16] S. G. Soni, A. K. Verma, and D. Yadav. "Improving

software defect prediction using hybrid machine learning

techniques." Journal of Software Engineering and Technology.

[17] A. K. Shukla, R. K. Agarwal, and A. R. Sharma. "Machine

learning algorithms for defect prediction in software systems: A
review and comparative analysis." Software Quality Journal,

vol. 28, no. 4, pp. 1059-1075, 2019.

[18] B. Y. Goh, C. M. Tan, and S. S. Lee. "Predicting software
quality using machine learning algorithms: A survey of

techniques." International Journal of Software Engineering and

Applications, vol. 11, no. 2, pp. 98-110, 2020.

[19] D. K. Dubey, P. S. R. D. Mishra, and H. S. S. Nair.
"Comparison of machine learning techniques for software

defect prediction using real-world datasets." International

Journal of Software Engineering and Knowledge Engineering,

vol. 33, no. 1, pp. 42-54, 2021.
[20] P. J. M. Rios, C. J. J. Lee, and K. A. Smith. "Defect

prediction in software using machine learning algorithms: A

case study." Journal of Software: Theory and Practice, vol. 45,

no. 6, pp. 707-717, 2021.
[21] T. S. V. Murali, P. K. Joshi, and D. K. Roy. "A hybrid

machine learning approach for software defect prediction." In

2020 International Conference on Software Engineering and

Applications (SEA), pp. 102-108, 2020.

http://www.ijise.net/

