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Abstract: 

Machine learning has been increasingly employed in healthcare. 

Considering the alarming number of deaths caused by cardiovascular 
diseases globally, tackling problems involving heart-related data is 

particularly important. This paper investigates how feature 

engineering influences classification performance. We used a support 

vector machine with three different feature extraction techniques: 
firstly, audio signal processing features; secondly, deep learning 

features from a VGG-like architecture pre-trained on Google’s Audio 

Set; lastly, concatenated deep learning features from the VGG16 and 

VGG19 architectures pre-trained on the ImageNet dataset. Finally, we 
combined all approaches through majority voting or feature 

concatenation. We tested our methods on two datasets from the 

PASCAL Classifying Heart Sounds Challenge and compared them 

with previous methods in the literature. Experimental results show 
how audio processing and deep learning features through 

spectrograms might interchangeably hold the same relevant 

information for this application, regardless of the pre-training dataset, 

and how experimentation is still recommended. 

Keywords: PASCAL classifying heart sounds, feature 

engineering, audio processing, deep learning, transfer learning 

 

1. INTRODUCTION 

Heart conditions are one of the leading causes of death worldwide. An 

estimated 17.7 million, approximately a third of the world’s deaths, are 

caused by cardiovascular diseases according to the American College 

of Cardiology and the World Health Organization [1]. Pre-diagnosis 
and pre-treatment of heart diseases are of the  utmost importance, if we 

intend to lower those numbers. Auscultation with a stethoscope, still 

the most cost-effective heart sound listening technique, relies heavily 

on the doctor’s ear sensitivity, experience and careful analysis to 
diagnose accurately. However, accuracy of doctors in training as low as 

20 % on average has been reported [2], around four times less than 

experienced cardiologists [3]. And it has gotten worse with time, which 

not only is harmful to patients who cannot seek proper care but also 
increases costs with inappropriate echocardiogram orders [4]. 

Consequently, there has been increasing interest in applying machine 

learning to heart-related issues. In addition, society’s usage habits of 

technology, especially with the popularization of wearables, might 
depict a great opportunity for a wide and consistent first level screening 

of cardiac pathologies. 

 

In 2011/2012 researchers conducted the Classifying Heart Sounds 

Challenge, sponsored by the PASCAL Network of Excellence, an 

audio data competition [5]. The challenge comprised two datasets from 
real-world situations, often containing various types of background 

noise. It was divided into two independent tasks: heart sound 

segmentation and heart sound classification. In this work we focus on 

classification only. There are 5 unique classes. Normal class audios 

mean healthy heartbeats. A normal heart sound exhibits a clear ”lub  

 

 

 

 

dub, lub dub” pattern, with a longer period between the ”dub” and 

the ”lub” for a heart rate of less than 140 beats per minute. The 

murmur class sounds as if there is a ”whooshing, roaring, rumbling, 

or turbulent fluid” noise either between S1 and S2 or between S2 and 
S1 (but not on S1 or S2). They might indicate many different heart 

disorders. Audios from the extra heart sound class are identified by an 

additional sound, 

e.g. a ”lub-lub dub” or a ”lub dub-dub”. It may or not indicate a 
condition and it is especially important to detect because it is not 

easily detected by ultrasound. Audios from the artifact class present 

a variety of sounds, from music to general noise. It is the hardest to 

discern and particularly important to detect so that the person can 
redo the exam. Audio from the extrasystole class are recordings with 

a heart sound out of rhythm, essentially an occasional extra heart 

sound (not regularly as extra heart sound). 

Over the years, researchers have proposed methods that could 

improve the results of the competition. Approaches range from 
complex audio signal processing techniques to model 

hyperparameters optimization and even convolutional neural 

networks (CNN) applied to the audio spectrograms. Our study 

investigates the difference in performance among three different 
feature extraction techniques, namely classical audio processing 

features, transfer learning from two CNNs pre-trained on image data 

and transfer learning from a CNN pre-trained on audio data. The goal 

is to compare each of these individually and combine them with 

majority voting (hard voting ensemble) or feature concatenation. We 

then compare the results with those previous methods up to the latest 

paper of which we are aware to this date when our experiments were 

performed. 
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2. LITERATURE SURVEY 

 
“Environmental sound classification with convolutional neural 

networks," byKarol J. Piczak The potential of convolutional neural 
networks (CNNs) in classifying short audio clips of environmental 

melodious frequency cepstral coefficients. Equally impressive 

results, similar to other cutting-edge approaches, can be achieved. 
surpassing simple baseline implementations that rely on three 

datasets containing environmental and urban recordings, “Deep 

Learning for Audio Signal Processing", by Shuo BoLi This article 

presents an overview of cutting-edge deep learning methodologies 
applied to audio signal processing, with a specific emphasis on 

speech, music, and environmental sound processing [2]. It outlines 

the commonalities and distinctions among these domains, as well as 

general techniques, challenges, important references, and the 

possibilities for mutual influence across areas. The objective of the 

review convolutional layers, max-pooling, and two fully connected 

layers. This model is trained on a low-level representation of 

sounds is extensively examined in this paper [1]. Surprisingly, a 

deep model is developed, consisting of not one but two audio data, 
specifically segmented spectrograms, along with deltas. 

 

 

 

 

The accuracy of this remarkable network is evaluated on is to 

offer insights into diverse deeplearning models and their 

practical applications in the realm of audio signal processing. 

 

“Audio Classification Techniques: A Comprehensive Review" 

by Alice Johnson, Robert Brown. The survey primarily focuses 
on the crucialaspect of feature extraction, recognizing MFCCs as 

a prominent tool for capturing distinctive audio characteristics 

[3]. The authors navigate through the effectiveness of MFCCs in 

representing the spectral content of audio signals, shedding light 
on their widespread adoption in audio-processing tasks. 

 

“Mel Frequency Cepstral Coefficient and its Applications: A 

Review" by Abdulbasit K. Al- Al- TalabaniZrar Kh. Abdul. 
Effective feature extraction greatly influences the performance 

of machine learning techniques, and one prominent method for 

modelingaudio signal features is the Mel Frequency 

CepstrumCoefficient (MFCC) [4]. This study seeks to providea 
comprehensive review of MFCC applications and address 

various challenges associated with its computation, exploring 

their impact on model performance. 

 

“Sound Classification Using Convolutional Neural Network 

and Tensor Deep Stacking Network” by Aditya Khamparia, 
Deepak Gupta. Sound plays a crucial role in various aspects of 

human life, including personal security and critical surveillance 

[3]. However, concerns regarding the effectiveness of existing 

systems in real-life situations continue to persist. This study 
explores the potential of deep learning architectures to address 

efficiency challenges faced by traditional systems [5]. 

 

“Music Detection Using Deep Learning with TensorFlow” by 

Satish Chikkamath & S. R. Nirmala Music, a form of artistic 
expression consisting of harmonious sounds, incorporates various 

components that define both musical and non-musical forms of 

expression. In this research, the primary objective is to determine 

the presence of music in an audio file by employing transfer 
learning. Previous studies propose that music detection involves 

the extraction of manual audio characteristics, such as zero-

crossing rate (ZCR), entropy, amplitude modulation ratio (AMR), 

and long-term spectral ratio (LSTER), which are then trained 
using classifiers such as SVM and Random Forest. 

 

3. PROPOSED METHODOLOGY 

 
Dataset A consists of crowd-sourced audio recordings from the 

general public by the iStethoscope Pro iPhone application. The 

app has features such as real-time filtering and amplification that 

results in sound quality as good as or better than digital 
stethoscopes available in the market according to cardiologists. 

Dataset B contains auscultations from the DigiScope Collector 

used in the Maternal and Fetal Cardiology Unit of the Real 

Hospital Portugues (RHP) in Re-ˆ cife, Brazil. Tables 1 and 2 
summarize the overall structure of the datasets, showing the 

number of files that belong to each class label along with its 

sampling frequency and origin. We used the following audio 

signal processing metrics: Melfrequency cepstral coefficients 
(MFCCs), zero-crossings, spectral centroid, roll-off frequency 

and chromagram (projection of the audio spectrum onto the 12 

semitones of the musical octave). We processed them as the sum 

of the zero-crossings and the average of the spectral centroid, 
roll-off frequency and chromagram values resulting in a total of 

24 features including 20 MFCCs. Spectrograms were generated 

with a mel scale based on energy magnitude with a Fast Fourier 

Transform (FFT) window of  2,048, 512 samples between 
successive frames and 256 mel bands. Values were finally 

converted to the decibel (dB) scale so as not to lose information. 

With spectrograms as inputs, we extracted deep learning features 

from the second last dense layer (fc1 or fc6) of the VGG16 and 
VGG19 both pre-trained on the ImageNet dataset [6]. 

Spectrograms were resized to match their required input 

resolution (224 × 224 × 3). We also extracted deep learning 

features from a CNN whose architecture is similar to those of 
VGG and for that reason is called VGGish [7]. This one, 

however, is pre-trained on Google’s AudioSet, a collection of 

2,084,320 human-labeled 10- second sound clips drawn from 

YouTube videos categorized into 632 classes [8]. 
We chose the support vector machine (SVM) algorithm to 

perform the multi-class classification since it is robust, works well 

with little training data, and has historically been yielding good 

results for heartbeat sound classification tasks [9]. We determined 
the SVM hyperparameters heuristically each time it was used in 

the method with values of the regularization parameter C between 

10−4 and 104, kernels varying between linear and radial basis 

function (RBF) with the coefficient gamma being either equal to 
the inverse of the number of features or the inverse of the number 

of features multiplied by its variance. Tables 3 and 4 show which 

values ended up being used for each Dataset. Model selection and 

hyperparameter tuning were not a focus. 
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We measured the effectiveness of our methods with the metrics specified by the challenge to compare them with the 

other documented approaches. They are essentially based on 

precision, sensitivity and specificity. For both datasets, we 

calculate the Youden’s Index γ, which has been traditionally used 

to evaluate diagnostic abilities (ability to avoid failure) of 
different test algorithms: VGGish was carried out using their 

public GitHub repository. VGGish originated 128 features while 

VGG16+VGG19 totalled 8,192 features (4,096 each). 

Concatenating the features of all three methods resulted in 8,344 

features. We then reduced the dimensionality through principal 

component analysis (PCA). Dataset A’s features were decreased 

to 100 components, with a total explained variance of 99.30 % 

and Dataset B’s features were decreased to 400 components, 

with a total explained variance of 99.77 %. 
 

 
Figure1. Proposed System. 

 

γ = sensitivity −(1− specificity) (1) We compute the Youden’s Index of the artifact class for Dataset 

A and of the problematic heartbeats (murmur and extrasystole 

combined) class for Dataset B. Nonetheless, we calculate the F- 

Score, with β set to 0.9, only for Dataset A, considering the 

heart problem classes (murmur and extra heart sound combined). 
And we compute the discriminant power DP, which measures 

how well an algorithm differentiates positive and negative 

examples, only for Dataset B:) 

 

A DP less than 1 indicates a poor discriminant. A DP less 

than 2 indicates the algorithm is limited. A DP less than 3 
indicates a fair performance. And in all other cases, it could be 

considered a good algorithm. The DP is calculated for heart 

problem samples (murmur and extrasystole categories 

combined). We used the evaluation script in the form of an Excel 
spreadsheet provided by the challenge organizers with all these 

metrics calculations implemented. 

 

We conducted three different classification methods 
independently. The first one was extracting the audio signal 

processing features from the audio files and using an SVM 

classifier. The second one was generating spectrograms, 

extracting the deep learning features from the VGGish, i.e. 

transfer learning, and using an SVM classifier. The third one was 

generating spectrograms, feeding them concurrently to both the 
VGG16 and VGG19 to extract deep learning features from their 

second last layer (dense layer fc1 or fc6), i.e. transfer learning, 

concatenating the resulting features and using an SVM classifier. 

Finally, we combined the methods by either majority voting of 
their predictions or using an SVM classifier after concatenating 

the features of all three methods. Figure 1 depicts the process 

described. Implementations and experiments were conducted in 

the open- source programming language Python using mainly 
librosa [10], TensorFlow [11] and scikit-learn [12]. Transfer 

learning with the Fig. 1. Proposed System 

 

4. EXPERIMENTAL ANALYSIS 

Results from each method and their two types of combination on 

Dataset A are shown in Table 5. They are also listed in Table 6 

alongside the results from previous methods in the literature, 
including the official submissions to the competition [13–20]. 

Results in [20] substantiate our decision to combine VGG16 and 

VGG19, particularly due to the significant increase of the 

precision of extrasystole. As for Dataset B, results are presented 
similarly in Tables 7 and 8. No single method of feature 

extraction consistently yields the best modeling performance. In 

fact, not even the differences among them held for the two 

datasets. For example, results for Dataset A tell us the classical 
audio features method is the most cost-benefit one, while the 

same might not be concluded from Dataset B. Although Dataset 

A and Dataset B are of the same nature and are being used for a 

very similar purpose, these two problems seem to be 
fundamentally different from a supervised learning point of view. 

This could be better assessed empirically by testing on a larger 

number of datasets, still of different origins, but with the same 

target classes. All in all, it reinforces the idea that top-performer 

feature extraction methods reported on similar datasets will not 

necessarily work 

and experimentation is still encouraged. Combining 

approaches will not necessarily improve performance. On 
Dataset A, VGGish had the best total precision score and 

VGG16+VGG19 had the greatest number of best scores when 

looking at the different criteria individually. On Dataset B, 
majority voting was only marginally better and feature 

concatenation was even considerably worse considering total 

precision. It indicates that features amid these different 

methods are much more redundant than complementary and 
that spectrograms do not seem to lose relevant information 

from the raw audio signal. Spectrograms are, on the other hand, 
more expensive to store and process. 

 The high dimensionality usually present in vision tasks 

might not be necessary for this application. The number of 
principal components in the order of 1 % to 5 % of all features 

was enough to retain almost all information. Despite not being 

designed for this purpose, in practice PCA was able to reduce 

the noise or, to put it another way, increase the signal-to-noise 
ratio. This could be useful from a computational resources 

perspective in occasions such as feature stores and efficient 
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(re)training, particularly when deploying on limited hardware. 

Dataset A, which is significantly smaller than Dataset B. This 

emphasizes the power of transfer learning, as it did not require  

majority voting was only marginally better and feature 

concatenation was even considerably worse considering total 

precision. It indicates that features amid these different 

methods are much more redundant than complementary and 

that spectrograms do not seem to lose relevant information 

VGGish and VGG16+VGG19, albeit deep neural networks, 

performed better than audio processing features for Dataset A, 

which is significantly smaller than Dataset B. This emphasizes 

the power of transfer learning, as it did not require the 

downstream task’s dataset to be as big as the one the models 

were pre-trained on, or big at all. the downstream task’s 

dataset to be as big as the one the on the goal, the approach 

may make all the difference. One of the most surprising results 

was reaching the perfect score on the precision of extrasystole, 

which has been historically hard to classify. This strengthens 

the importance of having a clear objective and being mindful 
of the appropriate metric to optimize for according to one’s 

application and requirements. It could also hint at the 

possibility of multiple models working together, each 

specialized in a particular target, instead of framing it as a 
multiclass problem. 

 
 

5. CONCLUSION 

In this paper, we investigated the classification of heartbeat 

sounds through the lens of feature engineering. Experiments 
were carried out on two challenging datasets from the PASCAL 

Classifying Heart Sounds Challenge. Using the same evaluation 

criteria of the competition, we compared each of our three 

approaches individually and in combination. We also compared 
them with previous work. 

 

 

 

Our results suggest that the feature space for this application 

may be considerably lower than usual vision tasks. Classical 

audio processing properties might perform better than 
preconceptually assumed and should still be included in the 

trade-off analysis. Combining approaches will not necessarily 

reach the best performance. And experimenting with different 

methods with clear appropriate evaluation metrics in mind is 
still advisable. In addition, transfer learning still proved to be 

useful and the pre-training dataset is seemingly not required to 

be similar to that of the downstream task. Lastly, spectrograms 

appear to hold all the relevant information for this particular 
purpose, opening up a whole spectrum of possibilities as vision 

research is much more mature than audio, especially if 

computational resources are not restricted. 

We hope this work helps with practical insights into 
developing and deploying heart issues early diagnostic tools. 

Furthermore, we believe it adds to the pile of evidence of what 

has been coined as “the great consolidation” in machine 

learning. 
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