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Abstract: 

  

 

In digital communication systems, channel encoders play a 

crucial role in rectifying random errors introduced by the channel. 

Typically, information about the type and parameters of channel 

encoders used at the transmitting end is available at the receiver. 

However, in non-cooperative scenarios like military 

communication systems, encoder types and parameters may be 

only partially known or entirely unknown. This paper explores 

the feasibility of employing a deep learning approach to classify 

four different types of encoders: block, convolutional, Bose- 

Chaudhuri-Hocquenghem (BCH), and polar encoders. Utilizing a 

convolutional neural network (CNN) model for classification, our 

proposed approach achieves classification accuracy exceeding 

95% upto bit-error- rate (BER) value of 0.03. The results also 

indicate that the accuracy improves with the input sample length. 
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1. INTRODUCTION 

 

In digital communication, forward error-correcting (FEC) codes 

play a pivotal role in mitigating random errors at the transmitter 

[1]. Understanding FEC encoders at the receiving end is crucial 

for decoding. While some receiver systems possess prior 

knowledge of the encoder used at the trans- mitter, enabling 

successful decoding, situations arise where blind estimation of 

the channel encoder becomes imperative, particularly when the 

receiver lacks prior knowledge [2]. Con- sequently, various 

innovative techniques and algorithms for the blind reconstruction 

of channel encoders have been introduced. However, these 

advancements pose new challenges. Address- ing these challenges 

have significant implications, especially in non-cooperative 

communication scenarios, where accurate reconstruction of the 

channel encoder is vital for successfully decoding the signals 

from unknown sources. Blind recognition of channel encoder 

parameters can enhance spectral efficiency by conserving channel 

resources [1], [2]. The blind recovery of convolutional encoders 

has been explored in prior research, as seen in works such as [2] 

and [3], leveraging algebraic and dual reconstruction of a parallel 

concatenation of two recursive systematic convolutional (RSC) 

encoders using it- erative expectation-maximization (EM) and the 

least-square method. Methods in [6] were based on the rank 

deficiency of the data matrix for recognizing encoders 

parameters, while [7] employed hamming weight distribution for 

the same purpose. The authors introduced parameter estimation 

algorithms for Reed-Solomon (RS) codes, leveraging the count of non-

zero columns and non-zero elements in the column echelon form of the 

data matrix. Recent literature explored blind identification of 

convolutional codes based on convolutional neural network (CNN) with 

accuracy above 90 %. Existing models, such as rank-based and 

mathematical algorithmic models, are sensitive to low signal-to-noise 

ratios and computationally complex. In contrast, our CNN model faces 

challenges with sequential dependencies in channel-encoded data, lacks 

memory for long- range dependencies, and may not inherently understand 

the physics of channel encoding. 

A. Motivations and Contributions 

Notably, while existing research has focused on employing deep learning 

techniques for recognizing individual FEC codes, there is a gap in 

addressing the classification of channel encoders using CNN. The 

principal objective of the proposed work is to leverage deep learning 

techniques for the classify- cation of four different channel encoders 

from the incoming noisy signal and assess the classification accuracy, 

specifically the probability of correct identification, under varying bit 

error rate (BER) conditions. We consider Hamming, convolutional, 

Bose-Chaudhuri-Hocquenghem (BCH), and polar encoders for the 

classification process. 

The process of classifying the FEC encoders is illustrated in Fig. 1. 

Initially, a series of randomly generated information bits represented as b = 

[b1, b2, ..., bk] is introduced into the FEC encoder. This encoder manages 

the continuous information bits with a block size of k and produces an 

encoded data bit sequence with a block size of n, denoted as c = [c1, c2, 

..., cn], where each ci is an element of the Galois Field GF(2). The code 

rate is given by r = k/n, where k and n denote code dimension and 

codeword length, respectively. After encoding, the resultant digital 

sequence undergoes modulation before transmission through the 

communication channel. The selected modulation schemes include binary 

phase-shift keying (BPSK) at the transmitter. Upon arrival at the receiving 

terminal, the received signal undergoes demodulation to extract the data 

bits, represented as y = [y1, y2, ..., yn]. After that the data bits are then 

transmitted to the FEC decoder for the retrieval of the original 

information bits. This research predominantly focuses on the autonomous 

identification or classification of encoders using a CNN model. The 

channel encoders under considera- tion find extensive applications in 

digital communication and storage systems, including satellite 

communications, wireless fidelity (Wi-Fi), and mobile communication 

standards like global system for mobile communications (GSM), code di- 

vision multiple access (CDMA), and 5G new-radio (NR). 

A. Dataset Generation 

In our experimental setup, MATLAB is employed to gen- erate datasets for 

four different coding schemes. We

http://www.ijise.net/
mailto:durgaprasadgatla@gmail.com


ISSN: 1934--9955 www.ijise.net 

Vol-20 Issue-01 April 2025 

   
 

 

 

 

 

 

 

901  

 

 

Fig. 1. Encoder classification 

process CNN-based blind encoder 

classification 

assume successful demodulation of information signal at 

the receiving end, along with perfect frame 

synchronization. Consequently, we assume additive white 

Gaussian noise (AWGN) channel. The paper features four 

FEC codes, including polar code. Polar codes, being the 

first codes with explicit proof of achiev- ing channel 

capacity for symmetric binary-input, discrete, memoryless 

channels (B-DMC), are based on the concept of channel 

polarization. The reliability sequence is crucial for both 

encoding and decoding, defined using a generator matrix 

established recursively through the Kronecker product [9]. 

In contrast, block codes operate by segmenting data into 

fixed- size blocks, treating each independently. For our 

exper- iment, the choice is a Hamming block code, often 

applied for single- error correction. In addition, BCH 

codes, also falling under the category of block codes, are 

renowned for their robust error correction capabilities, 

proficient in addressing both randomand burst errors 

across diverse applications. On the other hand, 

convolutional encoder deviates from block codes as it 

operates on a continuous data stream. It utilizes a shift 

register to process input data bit by bit, combining shift 

register contents through modulo-2 additions to generate 

the encoded output. 

Block codes are typically denoted as (n, k), where r = n−k 

denotes the length of the parity or redundancy bits. The 

convo- lutional code described in this paper is denoted by 

(n, k, N0), where N0 represents the length of the coding 

constraint. The polar codes described in this paper are 

denoted by (N, K), where N represents the codeword 

length, always taking the form of an exponent of 2, i.e. 2n 

(n ≥ 2), and K represents 
 

Fig. 2. Basic structure of CNN 

the number of message bits. The difference N−K 

corresponds to the number of frozen bits with reliability 

sequence Q [9]. 

 

2. LITERATURE SURVEY 

Channel encoder, which includes a forward error 

correcting (FEC) code followed by an interleaver, plays a 

vital role in improving the error performance of digital 

storage and communication systems. In most of the 

applications, the FEC code and interleaver parameters are 

known at the receiver to decode and de-interleave the 

information bits, respectively. But the blind/semi-blind 

estimation of code and interleaver parameters at the 

receiver will provide additional advantages in applications 

such as adaptive modulation and coding, cognitive radio, 

non-cooperative systems, etc. The algorithms for the blind 

estimation of code parameters at the receiver had 

previously been proposed and investigated for known FEC 

codes. In this paper, we propose algorithms for the joint 

recognition of the type of FEC codes and interleaver 

parameters without knowing any information about the 

channel encoder. The proposed algorithm classify the 

incoming data symbols among block coded, convolutional 

coded, and uncoded symbols. Further, we suggest 

analytical and histogram approaches for setting the 

threshold value to perform code classification and 

parameter estimation. It is observed from the simulation 

results that the code classification and interleaver 

parameter estimation are performed successfully over 

erroneous channel conditions. The proposed histogram 

approach is more robust against the analytical approach 

for noisy transmission environment and system latency is 

one of the important challenges for the histogram approach 

to achieve better performance. 

This paper gives a solution to the blind parameter 

identification of a convolutional encoder. The problem can 

be addressed in the context of the noncooperative 

communications or adaptive coding and modulations 

(ACM) for cognitive radio networks. We consider an 

intelligent communication receiver which can blindly 

recognize the coding parameters of the received data 

stream. The only knowledge is that the stream is encoded 
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using binary convolutional codes, while the coding 

parameters are unknown. Some previous literatures have 

significant contributions for the recognition of 

convolutional encoder parameters in hard-decision 

situations. However, soft-decision systems are applied 

more and more as the improvement of signal processing 

techniques. In this paper we propose a method to utilize the 

soft information to improve the recognition performances 

in soft-decision communication systems. Besides, we 

propose a new recognition method based on correlation 

attack to meet low signal-to-noise ratio situations. Finally 

we give the simulation results to show the efficiency of the 

proposed methods. 

This paper investigates blind identification methods for 

linear scramblers under non‐cooperative conditions, which 

are essential for the inverse analysis of communication 

protocols using scramblers. In this paper, a blind 

identification scheme for feedback polynomials of 

synchronous scramblers is proposed. A variable 

Υ¯$\overline{\Upsilon }$ is first proposed that measures 

the correctness of the test polynomial by using the soft 

information of the received sequence, then the mean and 

variance of the variable Υ¯$\overline{\Upsilon }$ in 

different cases are obtained, and finally the optimal 

threshold value to determine whether the test primitive 

polynomial is correct or not is obtained. That is, the blind 

identification problem is transformed into a hypothesis 

testing problem. The simulations verify that the proposed 

scheme requires a much smaller scrambled sequence 

length than existing blind identification schemes. 

Furthermore, the proposed scheme is more fault tolerant 

than existing schemes and has a signal‐to‐ noise ratio 

(SNR) gain of at least 3 dB when the intercepted 

scrambled sequences are of the same length and high 

identification accuracy is achieved. 

Blind estimation of forward error correction code 

parameters at the receiver plays a significant role in non-

cooperative communication, adaptive modulation and 

coding systems, and reconfigurable receiver systems. 

Turbo convolutional codes, a parallel concatenation of 

multiple convolutional codes, are used in digital 

communication and storage systems to achieve low bit 

error rate. The present paper proposes innovative algorithms 

for the blind estimation of code parameters and 

reconstruction of turbo convolutional encoder over noisy 

scenario. The turbo convolutional code is designed using 

two component codes along with an interleaver. Recursive 

systematic convolutional codes are used as component 

codes. Any imperfection in synchronization of received 

data for the proposed code parameter estimation algorithm 

is compensated through a bit position adjustment 

parameter. The performance of the proposed algorithms in 

terms of parameter estimation accuracy is investigated for 

different modulation order, code rate, and constraint length 

values. It is observed that the performance improves with 

decrease in modulation order and constraint length values. 

Blind estimation of forward error correction code 

parameters at the receiver plays a significant role in non-

cooperative communication, adaptive modulation and 

coding systems, and reconfigurable receiver systems. 

Turbo convolutional codes, a parallel concatenation of 

multiple convolutional codes, are used in digital 

communication and storage systems to achieve low bit 

error rate. The present paper proposes innovative algorithms 

for the blind estimation of code parameters and 

reconstruction of turbo convolutional encoder over noisy 

scenario. The turbo convolutional code is designed using 

two component codes along with an interleaver. Recursive 

systematic convolutional codes are used as component 

codes. Any imperfection in synchronization of received 

data for the proposed code parameter estimation algorithm 

is compensated through a bit position adjustment 

parameter. The performance of the proposed algorithms in 

terms of parameter estimation accuracy is investigated for 

different modulation order, code rate, and constraint length 

values. It is observed that the performance improves with 

decrease in modulation order and constraint length values. 

3. PROPOSED METHODOLOGY 

A CNN architecture consists of key components [10], 

including an input layer, an output layer, and multiple 

layers for convolution, pooling, and fully-connected 

operations, as il- lustrated in Fig. 2. The input layer is 

designed to receive image or grid-like data. The core 

elements of a CNN are the convolu- tional layers, which 

employ multiple filters to extract features [11]. These 

filters conduct convolution operations across the input 

data, identifying patterns such as edges, textures, and basic 

shapes. Filters, also referred to as kernels, are small-sized 

matrices or tensors that convolve across the input data 

during the operation of convolutional layers. In the 

subsequent pool- ing layers, spatial dimensions of the 

feature maps are reduced while retaining crucial 

information. This reduction is achieved through 

commonly used pooling techniques like max-pooling and 

average-pooling. Finally, the features extracted from the 

previous layers are processed beyond the capabilities of 

fully- connected networks. This is accomplished through a 

softmax- based probability distribution. 

A. CNN network learning 
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The training of a CNN involves initializing weights, 

forward propagation, loss calculation, backpropagation, 

and weight up-dates. Initially, a labeled dataset is collected 

and preprocessed, and the network’s weights are 

initialized, either randomly or through transfer learning. 

During forward propagation, batches of training data 

traverse the network, and the loss is computed using 

appropriate functions. Backpropagation then calculates 

gradients of the loss with respect to the weights, guiding 

subsequent weight updates using optimization algorithms 

like stochastic gradient descent (SGD). This iterative 

process is repeated for multiple epochs and monitoring the 

validation loss is crucial for detecting potential overfitting. 

B. Training and Testing 

In this work, our Keras-based model uses cross-entropy 

loss and the Adam optimization algorithm with initial 

learning rate equal to 0.0001. Training and testing occur on 

a personal computer with 64 GB RAM and a core i9 

processor in an 

TABLE I 

ARCHITECTURE SPECIFICATIONS OF THE CNN 

 

Layer Step size Output size 

Input / 16384 × 1 

Convolutional + ReLu 11 × 1/4 4094 × 96 

Maxpooling 3 × 1/2 2046 × 96 

Convolutional + ReLu 5 × 1/1 4094 × 128 

Maxpooling 3 × 1/2 1022 × 128 

Convolutional + ReLu 5 × 1/1 1022 × 192 

Convolutional + ReLu 5 × 1/1 1022 × 192 

Convolutional + ReLu 5 × 1/1 1022 × 128 

Maxpooling 3 × 1/2 510 × 128 

Global Average Pooling / 128 

Dense + ReLu / 128 

Dropout(0.5) / 128 

Dense + ReLu / 64 

Dropout(0.5) / 64 

Dense + Softmax / 4 

 

Anaconda Navigator environment. We generate a 

dataset of 10,000 samples, each 1000 in length (int32 

format), allocating 80% for model training and 20% for 

evaluation. Further, we use one-dimensional (1-D) CNN 

model [10] and the specific details are outlined in Table I. 

Our goal is to assess the model’s performance by 

calculating its classification accuracy using metrics like 

true positives (TP) and false positives (FP) for each encoder 

category as 

Accuracy(in %) = 
Tp 

× 100 
 

TP + FP 

1.00 

 

0.95 

 

0.90 

 

0.85 

 

0.80 

 

0.75 

 

0.70 

 

0.65 

 

0.60 

 

0.02 0.04 0.06 0.08 0.10 

 

Bit error rate (BER) 

 

                        EXPERIMENTAL ANALYSIS 

We adopt the Hamming code as the block 

en- coder, characterized by a codeword length of n 

= 7, code dimension k = 4, and generator matrix G 

= [1010011; 1001001; 0011011; 1000101]. Further, 

BCH code Is employed with n = 31 and k = 21. We 

consider a rate- 1/2 convolutional encoder with 

constraint length N0 = 4 and generator polynomial g = 

[15, 17]. The fourth encoder utilized is a polar 

encoder with a reliability sequence of Q = 1024 for 

codeword length N = 16 and length of message bit K 

= 2.Following the training of the encoder dataset on the 

CNN model, we evaluated its performance using a 

dedicated test 
Normalized Confusion Matrix 
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encoders (i.e. Hamming, BCH, convolutional, and 

polar) is illustrated in Fig. 3. The accuracy, as depicted 

in the figure, consistently surpasses 95% across varying 

input lengths for BER values below 0.03 and 100% 

for BER values less than 0.02, except for the input size 

512. Notably, larger input sizes exhibit enhanced 

accuracy in the classification process. Fig. 4 presents 

the confusion matrix for encoder classification at an 

input size of 4096 and a BER of 0.02. Predicted 

values are rep- resented along the vertical axis, while 

test values are along the horizontal axis. In this matrix, 

dark blue squares signify the classification accuracy of 

encoders. The confusion matrix reveals that only the 

Hamming encoder exhibits an accuracy of 86%, 

whereas the remaining three encoders achieve a perfect 

100% classification accuracy. This is because, 

Hamming codes introduce a relatively lower level of 

redundancy compared to other codes; hence, this lower 

redundancy results in fewer distinct patterns for the 

CNN to learn. 

5. CONCLUSION 

In this manuscript, we utilized a CNN model based on 

deep learning for the purpose of identifying the correct 

encoder among block, convolutional, BCH, and polar 

encoders over an AWGN channel. Our analysis of 

classification accuracy con- sidered varying input 

sample sizes, revealing that an increase in the input 

sample length correlates with higher accuracy. Notably, 

at lower BER, the accuracy consistently achieves 100% 

before reaching the BER value of 0.02. 
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