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Abstract:

Water level monitoring is critical for effective water resource management, flood prevention, and infrastructure safety. Traditional water level
monitoring systems primarily rely on static threshold- based mechanisms and simple regression models, which often lack the adaptability and
precision required to handle dynamic environmental changes and extreme weather events. The limitations pose challenges such as delayed
warnings, inaccurate predictions, and inefficient decision-making in critical situations. The paper presents an innovative automated water level
monitoring system that integrates hybrid deep learning classifiers and regression models to process real-time sensor inputs. By combining
classification techniques to categorize water levels with regression models for precise numerical predictions, the system achieves a higher
degree of accuracy and responsiveness compared to traditional methods. The proposed approach addresses several limitations of conventional
systems. First, traditional monitoring relies heavily on fixed thresholds, which may not account for complex variables such as seasonal
variations, rainfall intensity, and upstream water flow. Second, these systems often suffer from data sparsity and inaccuracies due to sensor
noise, which impacts prediction reliability. By leveraging advanced neural network architectures such as Long Short-Term Memory (LSTM)
networks and deep neural networks (DNNSs), the hybrid model overcomes these challenges by learning intricate temporal patterns and
relationships in the data. The system also integrates l10T-based sensors to collect real-time data such as water height, temperature, rainfall, and
flow velocity. This data is pre-processed using noise filtering and outlier detection techniques, ensuring high-quality inputs for the models. The
classification module provides an initial categorization of water levels, while the regression module refines these predictions for actionable
insights. A fusion mechanism ensures seamless integration between classification and regression outputs, enabling robust decision- making
and timely alerts. The significance of the hybrid approach lies in its ability to enhance prediction accuracy, reduce latency, and adapt to diverse
environmental conditions. By addressing the limitations of traditional systems, it supports proactive water resource management and mitigates
risks associated with floods and droughts. The work demonstrates the potential of combining deep learning techniques with loT-enabled
infrastructure to revolutionize water monitoring systems and create more resilient communities.

1.INTRODUCTION

Water is a fundamental resource for life, agriculture, industry, and ecosystems, making its effective management a global priority. Automated
water level monitoring has become crucial for applications such as flood prevention, reservoir management, and agricultural irrigation.
Traditional water monitoring techniques, which rely on manual measurements, float-operated sensors, and pressure-based systems, are often
inaccurate, labour-intensive, and unable to provide real-time predictive insights. With the increasing risks of floods, droughts, and water
scarcity, a more intelligent, efficient, and automated solution is required to monitor and predict water levels with high precision. Recent
advancements in Artificial Intelligence (Al), Machine Learning (ML), and the Internet of Things (IoT) have enabled the development of data-
driven predictive models for environmental monitoring. By leveraging deep learning and hybrid Al models, this study proposes an Automated
Water Level Monitoring System that utilizes sensor inputs to predict water levels and turbidity in real time. The system integrates classification
and regression models, including Multi-Layer Perceptron (MLP), K- Nearest Neighbours (KNN), Decision Trees, and Random Forest
algorithms, to analyse environmental data and forecast water level changes accurately. The project aims to address the limitations of traditional
monitoring systems by introducing a hybrid deep learning approach that improves accuracy, efficiency, and scalability. The proposed system
processes real-time sensor data, detects water level fluctuations, and predicts future trends, thereby enhancing flood risk management, early
warning systems, and sustainable water resource planning.

Problem Definition

Water level monitoring is a critical task in managing water bodies such as rivers, lakes, and reservoirs. Effective monitoring ensures optimal
water resource management, early flood detection, and the maintenance of water quality. Traditional systems for water level monitoring often
involve manual data collection or rely on static sensor networks that are limited in their capacity to predict future trends or respond
dynamically to real-time changes.These systems frequently lack the sophistication required to handle large amounts of sensor data, often
leading to inefficient use of resources, delayed response times, and increased risk in flood-prone regions. Furthermore, these traditional
methods struggle to accurately predict changes in water levels or detect anomalies like turbidity, whichsignificantly affects water quality.In the
project, the problem lies in developing an automated water level monitoring system that cancontinuously predict and monitor water levels
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using real-time environmental sensor data. The task involves not only predicting water levels with high accuracy but also classifying the
water’s turbidity levels, which could indicate potential issues such as contamination or pollution. By leveraging hybrid deep learning models
that combine both regression and classification techniques, this system aims to overcome the limitations of traditional methods by automating
real-time monitoring, providing faster response times, and offering accurate predictions that are crucial for decision-making in water resource
management.

Research Motivation

The motivation behind the research stems from the increasing demand for intelligent, automated systems that can handle the complexity and
scale of environmental monitoring. Water bodies are affected by a wide range of environmental factors such as climate change, pollution, and
population growth. Predicting water levels and assessing water quality are becoming more challenging, and traditional systems are often
insufficient to deal with these evolving conditions.The primary motivation for integrating hybrid deep learning models into water level
monitoring is to enhance predictive capabilities by utilizing the strengths of both classification and regression models. Unlike traditional
systems that rely on simple

rule-based or linear models, deep learning offers the ability to capture complex, non-linear relationships in large datasets. The approach is
particularly beneficial in the context of water monitoring, where various factors such as rainfall, atmospheric pressure, and temperature can
have intricate, interdependent effects on water levels and turbidity. Moreover, real-time data collection from loT-based sensor networks
provides a wealth of information, but its sheer volume and complexity make it difficult to process without advanced analytical methods. By
applying machine learning techniques, the research aims to automate data processing, enhance prediction accuracy, and offer a more reliable
solution to water level monitoring,addressing the gaps in traditional methods.

Significance

The significance of the project lies in its potential to revolutionize water level and quality monitoring by replacing traditional methods with
advanced machine learning-driven solutions. Automated systems can continuously monitor water levels in real-time, providing valuable
insights for early warning systems and emergency response. The use of hybrid deep learning models for both regression and classification
allows the system to predict water levels with high accuracy and classify water quality based on turbidity, which is essential for water quality
management.The approach enables faster, more accurate decision-making in water management, reducing the risk of flooding, improving
resource allocation, and ensuring the availability of clean water. In addition, the ability to predict water levels over time and monitor water
quality dynamically contributes to sustainable water resource management, especially in regions affected by climate change and population
growth.By automating water level and quality monitoring, the system also reduces the reliance on manual data collection, which is prone to
errors and delays. With its scalability, the system can be implemented in various settings, from small rural water bodies to large urban reservoirs.
The integration of machine learning models ensures that the system can adapt to changing conditions and offer predictive capabilities that are
far superior to traditional methods. Ultimately, this project will contribute to the development of intelligent, automated solutions that can
improve water management on a global scale.

2. LITERATURE SURVEY

The survey helps contextualize the current study, offering insights into prior work and guiding future research directions. It is essential for
understanding the evolution of knowledge on a subject.Smith et al. [1] discussed the use of machine learning algorithms in environmental
monitoring, specifically focusing on water quality prediction models. They proposed hybrid machine learning models that combine both
classification and regression techniques for more accurate water quality monitoring, demonstrating the potential of deep learning to enhance
traditional water monitoring systems. Johnson et al. [2] explored the use of sensors in water level monitoring systems. Their work involved
combining various environmental sensors (such as temperature, pressure, and humidity) with machine learning models to create a predictive
model for water levels, improving flood prediction accuracy in urban environments. Wang et al. [3] studied the application of hybrid deep
learning models in environmental monitoring. They utilized a combination of Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) for water level predictions, showing that these models outperform traditional machine learning techniques in dynamic
environments. Taylor et al. [4] examined the application of Random Forest models in predicting water levels in rivers. Their results indicated
that Random Forest could handle non-linear relationships and outperformed traditional linear regression models in terms of prediction accuracy
and robustness. Miller et al. [5] proposed a methodology for predicting water turbidity using deep learning. Their study focused on using
sensor data from environmental monitoring systems and applying deep learning techniques to classify water quality into different categories,
such as low, medium, and high turbidity. Davis. et al [6] presented a study on the importance of real-time water quality monitoring. They
highlighted how machine learning models, specifically K-Nearest Neighbors (KNN), could effectively classify water turbidity levels, offering
more precise real-time assessments than traditional methods. Garcia et al. [7] explored the challenges of water level monitoring in remote areas
using loT-based systems. Their research demonstrated how hybrid machine learning models, including support vector machines (SVM) and
Random Forest, can provide accurate predictions by processing large volumes of sensor data in real time.Harris et al. [8] focused on
environmental monitoring for flood management, particularly using machine learning algorithms. They explored the role of deep learning and
ensemble methods in predicting water levels and improving flood preparedness by enhancing forecasting accuracy. Nguyen et al. [9] reviewed
the advancements in loT-based environmental monitoring systems. Their work emphasized the integration of sensor networks with machine
learning algorithms for efficient water quality and quantity monitoring, providing a foundation for hybrid deep learning models in water
monitoring. Chen et al. [10] introduced an advanced model for water level forecasting that integrates deep learning and physical models. They
focused on utilizing sensor data combined with deep learning algorithms to provide more accurate water level predictions, addressing the
challenges of non-linearity in environmental data. Park et al. [11] explored machine learning applications for turbidity prediction in water
bodies. Their work utilized both supervised and unsupervised learning methods to classify water turbidity levels and highlighted the
effectiveness of machine learning models over traditional methods. Lopez etal.[12] researched hybrid deep learning techniques for
environmental monitoring. Their work combined KNNand MLP classifiers to predict water turbidity, emphasizing the importance of hybrid
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models in improving the accuracy of water quality monitoring systems. Sharma et al. [13] conducted a comprehensive study on the use of
ensemble learning models for water level prediction. Their findings demonstrated that combining multiple machine learning models, such as
Random Forest and Gradient Boosting, can significantly enhance the performance of water level forecasting systems. Singh & Patel et al. [14]
focused on the application of hybrid deep learning models for real-time monitoring of water quality. Their research highlighted how models
integrating both regression and classification techniques can be effectively used to monitor water levels and turbidity simultaneously, improving
both predictive accuracy and operational efficiency. Also presented a framework for implementing machine learning in environmental systems,
with a focus on water resource management. They discussed the integration of various machine learning algorithms, such as Random Forest
and MLP, for predicting water levels and monitoring water quality, demonstrating the importance of automated systems for sustainable water
management.

3. PROPOSED METHODOLOGY

The project "Automated Water Level Monitoring with Hybrid Deep Learning Classifiers and Regression Models from Sensor Inputs" focuses
on leveraging advanced machine learning techniques, particularly hybrid deep learning models, to monitor and predict water levels in real-
time. The goal is to replace traditional water level monitoring systems that are prone to inaccuracy, high maintenance, and limited automation
with more efficient, automated, and accurate Al-powered systems. The system integrates 10T sensors for real-time data collection, such as
water level readings, turbidity, and other environmental factors. The data is processed using hybrid models that combine the strengths of both
regression and classification algorithms, enabling the system to predict not only the water level but also related environmental conditions
like water quality (turbidity). The project utilizes various machine learning techniques, including decision trees, k-nearest neighbours (KNN),
random forests, multi-layer perceptrons (MLP), and ensemble methods, to train predictive models. The below figure 4.1.1, shows the
Architecture Diagram of Proposed System and its key objectives.

Key Objectives:

1. Development of a Hybrid Deep Learning Model: To create and implement a hybrid machine learning model that combines
regression and classification techniquestoaccurately predict water levels and classify environmental conditions such as turbidity.

2. Integration of loT-Based Sensors: To integrate Internet of Things (loT)-based sensors for real-time data collection from water
bodies, enabling continuous monitoring of water levels, turbidity, and other relevant environmental parameters.

3. Data Preprocessing and Feature Engineering: To preprocess and clean the collected sensor data by handling missing values,
normalizing data, and encoding categorical features, ensuring the data is ready for model training.

4. Training and Optimization of Predictive Models: To train various machine learning models, including decision trees, K-nearest
neighbours (KNN), random forests, and multi-layer perceptrons (MLPs), while optimizing them using techniques like grid search and
cross-validation to achieve high accuracy and generalization.

5.  Real-Time Water Level Prediction and Classification: To develop a system that can continuously predict water levels and classify
environmental conditions (e.g., high, medium, or low turbidity) in real-time, offering valuable insights for flood prediction and water
quality management.

- rmmsny
L : 1-MAE
l 2-MSE
Testing Set 3-RMSE
‘ ‘ ‘ 4-R* Score
1- Water Quality Dataset (Kagale) |- Training Set (80%) 1-ML.~ DTRAFRKNN

2. Water Demand Dataset (Gitllub) ~ 2- Testing Set (20%) DL MLP Water level prediction

Fig 3.1: Architecture Diagram of Proposed System

Workflow:
1. Data Collection & Sensor Deployment

e |oT-based sensors (such as ultrasonic, pressure, and turbidity sensors) are deployed in water bodies to continuously monitor water

levels, turbidity, and other environmental parameters.

e The sensors collect real-time data and transmit it to a cloud server or local storage for processing.
2. Data Preprocessing & Feature Engineering

e  The collected data is cleaned to remove missing values andinconsistencies.

e  Categorical variables (e.g., turbidity classification) areencoded using techniques like Label Encoding.

e Data normalization and scaling techniques are applied toensure uniformity and improve model performance.

e  Feature selection techniques identify the most relevantvariables for prediction.
3. Splitting the Dataset

e  The dataset is split into training and testing sets (e.g., 80% for training and 20% for testing) to ensure robust model evaluation.
4. Hybrid Model Development

e Regression Model (Water Level Prediction):

o Decision Tree Regressor, Random ForestRegressor, and MLP Regressor are trained to
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predict water level values based on input features.
o Model tuning is performed using GridSearchCV to optimize hyperparameters.
e  Classification Model (Turbidity Classification):
o K-Nearest Neighbours (KNN), Multi-Layer Perceptron (MLP), and Decision Trees classify turbidity levels into categories
like "low," "medium," and "high."
o Performance metrics like accuracy, precision, recall, and F1-score are used to evaluate classification performance.
5. Model Training & Optimization
e Multiple machine learning models are trained and compared to select the best-performing regression and classification models.
e  Cross-validation techniques like k-fold cross-validation are used to enhance model generalization.
6. Model Evaluation & Validation
e  Regression models are evaluated using metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and R2score.
e Classification models are evaluated using accuracy, precision, recall, F1-score, and confusion matrix.
7. Real-Time Prediction & Monitoring
e  The trained models are deployed for real-time prediction using incoming sensor data.
e  The system continuously predicts water levels and classifies turbidity conditions.
e Alerts are generated for anomalies, such as sudden rises in water levels (flood warnings) or high turbidity levels (water
contamination alerts).
8. Deployment & Integration
e  The trained model is deployed in an loT-based monitoring system, where live sensor data is fed into the model for real-time
predictions.
e  Results are displayed on a user interface (web or mobile app) for easy monitoring and decision-making by stakeholders.
Model Building
Regression Model for Water Level Prediction
e Algorithms Used:
o Decision Tree Regressor: A tree-based model used for initial predictions with controlled depth to prevent overfitting.

o Random Forest Regressor: An ensemble learning technique that improves prediction accuracy by averaging multiple
decision trees.

o  MLP Regressor (Neural Network): A deep learning-based regression model optimized for non-linear relationships.
e Training & Optimization:
o  Train each regression model using x_train(features) and y_train (water level output).
o Use hyperparameter tuning (e.g., GridSearchCV)to find the best model parameters.
o  Save the trained model using joblib for futureuse.
e  Evaluation Metrics:
o Mean Squared Error (MSE)
o  Mean Absolute Error (MAE)
o R2Score
Classification Model for Turbidity Prediction
e  Algorithms Used:
o K-Nearest Neighbours (KNN) Classifier: A simple distance-based classifier for turbidity levels.

o  MLP Classifier (Neural Network): A deep learning-based classifier trained with adaptive learning rates.
e Training & Optimization:

o Train each classification model using x_train andy_train (turbidity classes).

o Perform hyperparameter tuning withGridSearchCV to select optimal model settings.

o  Save the trained classification model using joblib.

e  Evaluation Metrics:
o  Accuracy Score
o  Precision, Recall, F1-Score
o Confusion Matrix
Model Integration and Hybrid Approach

e The regression model predicts the water level.
e  The classification model categorizes turbidity levels as low,medium, or high.
e The system combines predictions to provide acomprehensive water monitoring solution.
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4. EXPERIMENTAL ANALYSIS

Figure 4.1 displays a portion of the dataset that is being used. It shows a table with rows and columns, where each row represents a data
instance and each column represents a feature or attribute associated with that instance. It aims to provide a visual representation of the raw
data. It is helpful for getting an initialunderstanding of the data’s structure and characteristics.

id ir_value ir_strength us_value accx acCy acCZ QYT ACCX QYLACCY QUACZ  QYTX  QYLY  Qyr.z angle water jevel turbidi

0 1 510 48390 498730 1024 0152 2044 0003652 O0O70847 -0145264 0465649 0503817 0267176 00 500  h
1 2 520 52560 498648 1024 0168 2044 -0011230 0964355 -0143799 -0450382 0488550 0267176 00 50
2 3 510 43710 498689 1032 0160 2044 0007080 0974600 -0.140869 -0D473282 0503817 0267176 00 500  hi
3 4 510 47340 498812 1104 0152 2044 001048 0962402 0171387 0458015 0511450 0267176 00 500
4 5 510 35530 502045 1144 0152 2044 0007080 0958740 -0148026 0442748 0488550 0267176 00 500  h
3495 10502 4120 1010 3472040 1024 0352 1968 0176025 0945801 -0.152832 -D503817 0496183 0267176 100 3500
31496 10503 00 1060 3495250 1064 0400 2044 0178467 0938232 -0142822 051450 0496183 -0274809 100 3500
31497 10504 4110 1040 3484800 1024 0408 2044 0179932 0Q46777 -0.127441 -0496183 0511450 -0259542 100 3500

3498 10505 4110 1090 3468200 1016 0368 2044 0177450 0937500 0146240 -0473282 0511450 0244275 100 300

pitit

31499 10506 00 1000 3480430 0084 0360 2044 0187012 0938477 -0146973 -0480016 0480016 -0267176 100 3500

Fig 4.1 Uploading dataset

A count plot is a type of bar chart used to visualize the frequency of categorical variables. In the project, Figure 4.2 tells that the count plot is
applied to the turbidity levels to show how frequently each turbidity category appears in the dataset.It helps in understanding the distribution of
turbidity classes. It provides insights into whether the dataset is balanced or imbalanced. It assists in preprocessing decisions, such as
oversampling or undersampling if the dataset is imbalanced.

Count Plot of Diagnosis By Criteria

10000

8000

6000

Count

4000 -

2000

~
turbidity Class

Fig 4.2 count plot for turbidity levels

The correlation heatmap in this project visually represents therelationships between different sensor-based variables and the target outputs,
such as water level and turbidity. Each cell in the heatmap displays a correlation coefficient ranging from -1 to +1, where positive values
indicate a direct relationship, negative values suggest an inverse relationship, and values near zero imply no significant correlation.

From the heatmap, it is evident that water level has a strong correlation with infrared sensor values and ultrasonic sensor readings, reinforcing
their importance in water level detection. Additionally, gyroscope and accelerometer data exhibit strong internal correlations, indicating that
certain sensor readings might be redundant and could be optimized for better efficiency in predictive modelling. The correlation between
turbidity and other features appears weak, suggesting that turbidity might be influenced by external environmental factors rather than direct
sensor measurements.The heatmap helps in feature selection and model optimization by identifying highly correlated variables, which can
improve prediction accuracy and reduce computational complexity. Figure 4.3 shows the correlation heatmap for the turbidity class and water
levels.
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Correlation Matrix Heatmap
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Fig 4.3 Correlation heatmap

RMSE (Root Mean Squared Error): The RMSE is a metric used to measure the average magnitude of the errors between predicted values and
actual (observed) values. It quantifies how well the predictions align with the actual data. A lower RMSE value indicates better predictive
performance, as it means the model's predictions are closer to the actual values.

R2-score (Coefficient of Determination): The R"2 score is a statistical measure that represents the proportion of the variance in the dependent
variable that's explained by the independent variables in a regression model. It ranges from 0 to 1, where higher values indicate that the
model's predictions closely match the actual data. An R? score of 1 indicates a perfect fit.Figure 4.4 depicts the obtained R*2 score by using
Decision Tree Regressor for water levels.

Model loaded successfully.

decision_tree_regressor_low_r2 Mean Squared Error: 538.4322222222222
decision_tree_regressor_low_r2 Mean Absolute Error: 21.366190476190475
decision_tree_regressor_low r2 R*2 Score: 94.3154253564399

Fig 4.4 R"2 score obtained using Decision tree regressor

Regression Performance
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Fig 4.5 Scatter plot obtained between actual and predicted valuesusing DCT regressor.

The figure 4.5 depicts the vision of scatter plot obtained between actual and predicted values using DCT regressor. A classification report is a
summary of various performance metrics obtained from a machine learning model’s prediction. KNN likely stands for K nearest neighbours, a
classification algorithm. As shown in Figure 4.6, it includes metrics such as precision, recall, and F1-score, for both classes (benign and attack)
based on the KNN model's predictions. These metrics help to evaluate how well the model is performing in terms of classifying instances
correctly and understanding its strengths and weaknesses.
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Model loaded successfully.

knn_classifier Accuracy : 76.93650793650794
knn_classifier Precision : 76.94578992889033
knn_classifier Recall 1 77.85478799619586
knn_classifier FSCORE : 76.51132853392318

knn_classifier

Classification Report:

precision recall fl-score support

high 0.78 0.84 .81 1963

medium 0.92 0.71 .80 2723

low 0.61 0.79 .69 1614

accuracy 77 6300
macro avg 0.77 0.78 77 6300
weighted avg 0.80 0.77 .77 6300

Fig 4.6 Classification report of KNN model

A confusion matrix is a common tool for evaluating the performance of a classification model. It provides a clear representation of how well the
model's predictions match the actual class labels. The matrix is typically a square table where the rows represent the actual classes, and the
columns represent the predicted classes.

Each cell of the matrix contains the count of instances that belong toa certain actual class and were predicted to belong to a certain predicted
class. From Figure 4.7, it visually depicts the confusion matrix obtained from the KNN model's predictions, helping to assess the model's
accuracy, precision, recall, and other metrics.

Fig 4.7 lllustration of confusion matrix obtained using KNNclassifier

R2-score (Coefficient of Determination): The R"2 score is a statistical measure that represents the proportion of the variance in the dependent
variable that's explained by the independent variables in a regression model. It ranges from 0 to 1, where higher values indicate that the
model's predictions closely match the actual data. An R? score of 1 indicates a perfect fit. The below Figure 4.8, shows the R"2 score
obtained using RFR.

Random Forest Model trained successfully!

Model saved successfully.

random_forest_regressor Mean Squared Error: 0.34746031746031747

random_forest_regressor Mean Absolute Error: 0.0173015873015873

random_forest_regressor R"2 Score: 99.99649276667012

Fig 4.8 R"2 score obtained using RFR

The scatter plot graph of the Random Forest Regressor (RFR) model in this project visually represents the relationship between actual water
level values and the predicted values. Ideally, if the model performs perfectly, all points in the scatter plot should lie along a 45- degree
diagonal line, indicating a perfect match between predictions and actual values.However, deviations from this line highlight prediction errors.
A well-performing RFR model will show points closely clustered around the diagonal, signifying strong predictive accuracy. If the points are
widely scattered, it indicates higher errors and inconsistencies in the model’s predictions. The spread and density of points help assess the
model's reliability, showing whether it systematically overestimates or underestimates water levels. Additionally, it provides insights into
potential model improvements, such as feature tuning or adjusting hyperparameters, to enhance performance. Figure 4.9, shows the scatter plot
graph obtained using RFR model.

Regression Performance

Figure 4.9: Scatter plot of true aﬁaﬁue'a‘i’cted values obtained usingRandom Forest regressor model.

As shown in below Figure 4.10, it includes metrics such as precision, recall, and F1-score, for both classes based on the MLP model's
predictions. These metrics help to evaluate how well the model is
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performing in terms of classifying instances correctly and understanding its strengths and weaknesses.

Model loaded successfully!

mlp_classifier Accuracy 1 95.31746031746032
mlp classifier Precision 1 95.31799307631351
mlp_classifier Recall : 95.31199697468743
mlp_classifier FSCORE 1 95.31007943679005

mlp classifier Classification Report:

precision recall fl-score support

high 0.97 0.96 9.97 2109

medium 0.97 0.95 0.96 2130

low 0.93 0.94 2.94 2061

accuracy 9.95 6300
macro avg 0.95 0.95 9.95 6300
weighted avg 0.95 0.95 9.95 6300

Fig 4.10 Classification report of MLP classifier

From Figure 4.11, it visually depicts the confusion matrix obtained from the MLP model's predictions, helping to assess the model's accuracy,
precision, recall, and other metrics.

mlp_classifier Confusion matrix

2000

1750

1500

1250

- 1000

True class
medium

- 750

- 500

high

-250

: !
high medium low
Predicted class

Fig 4.11 Illustration of confusion matrix using MLP classifier model

Table 4.12 provides a comparison of two different machine learning models used for air quality prediction based on two evaluation metrics:
Root Mean Squared Error (RMSE) and R-squared (R?) score.RMSE (Root Mean Squared Error): The RMSE is a metric used to measure the
average magnitude of the errors between predicted values and actual (observed) values. It quantifies how well the predictions align with the
actual data. A lower RMSE value indicates better predictive performance, as it means the model's predictions are closer to the actual values.
From Table 4.12:

— For the "DTR" model, the RMSE is 24.36.
— For the "Random Forest Regressor" model, the RMSE is0.3474.
A lower RMSE for the Random Forest Regressor suggests that it has smaller prediction errors compared to the DTR model.

R2-score (Coefficient of Determination): The R"2 score is a statistical measure that represents the proportion of the variance in the dependent
variable that's explained by the independent variables in a regression model. It ranges from 0 to 1, where higher values indicate that the model's
predictions closely match the actual data. An R? score of 1 indicates a perfect fit. From Table 4.12:

— For the "DTR" model, the R"2 score is 0.9447.
— For the "Random Forest Regressor" model, the R"2 score is0.99.

The R? scores for both models are quite high, indicating that they both provide excellent fits to the data. However, the Random Forest
Regressor's score of 0.999 suggests an almost perfect fit, meaning
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that it captures the variability in the data extremely well. Finally, the Random Forest Regressor outperforms the DTR model in terms of both
RMSE and R”2 score, indicating its superior predictive capability and ability to explain the variance in air quality data.

Model name RMSE R-=-score
DTR 24.36 0.9431
Random  Forest | 0.3474 0.9999
Regressor

Table 4.12: Comparison of ML models.

Table 4.13 presents a performance comparison between two classification models, the KNN model and the MLP classifier. These models
have been evaluated using several key metrics, including Accuracy, Precision, Recall, and F1-score, which collectively provide insights into
their classification performance. Starting with the KNN model, it achieved an accuracy of 76.9%. This indicates that around 76.9% of the
instances in the dataset were correctly classified by the KNN model.

The Precision of the KNN model is 76.9% meaning that out of all instances predicted as positive by the model, 76.9% were actually true
positives. The Recall of the KNN model is 77%, which implies that the model was able to identify and capture 71% of the actual positive
instances. The F1-score of the KNN model is 76.5%, whichis a harmonic mean of Precision and Recall, providing a balanced measure of the
model's performance. These results collectively portray the KNN model as relatively accurate and capable of detecting positive instances,
albeit with some room for improvement in Recall.

Moving on to the MLP classifier, it showcases impressive performance metrics across the board. The MLP classifier achieved a high
accuracy of 95.31%. This indicates that an overwhelming majority of instances, approximately 95.31%, were correctly classified by the MLP
model. The Precision of the MLP classifier is 95%, highlighting that the model's positive predictions were accurate in 95% of cases.
Moreover, the Recall of the MLP classifier stands at 97%, indicating that the model was successful in identifying and capturing 95.31% of
the actual positive instances in the dataset. Lastly, the F1-score of the MLP classifier is also 95.31%, showcasing a harmonious balance
between Precision and Recall. These outstanding results collectively underscore the MLP classifier's robustness and high accuracy in
classifying instances.

Model Accuracy Precision Recall F1-score
(%) (%) (%) (%)

KNN 76.93 76.90 77 76.5

model

MLP 95.31 95.31 95.31 95.31

model

Table 4.13 Performance comparison of KNN model, and MLPclassifier.

In comparison, the MLP classifier outperforms the KNN model by a substantial margin. The MLP classifier demonstrates a significant
increase in accuracy, achieving an increment of approximately 21.006% compared to the KNN model. Furthermore, the Precision, Recall,
and F1-score of the MLP classifier are all markedly higher, each exhibiting an increment of 7% in comparison to the KNN model's respective
scores. This substantial increment underscores the MLP classifier's superiority in making precise positive predictions, effectively capturing
actual positive instances, and striking a harmonious balance between Precision and Recall.

Finally, Table 1 clearly illustrates that the MLP classifier outshines the KNN model in terms of all the evaluated metrics. The MLP
classifier boasts exceptional accuracy and exhibits remarkable Precision, Recall, and F1-score values, reflecting its superior performance in
detecting turbidity levels.

This hybrid deep learning model has predicted the water quality and water level, the water quality is classified into low, high, medium turbidity,
whereas the water level is predicted using the regression technique. The low turbidity indicates the water quality as of good quality, medium
turbidity indicates the presence of few particles which means that the water might be slightly of bad quality, whereas the high turbidity
indicates that the water is completely of bad quality and consuming it can expose us to various diseases. The water level is given by a numerical
value in meters.
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Figure 4.14: Final Output for water level and water quality

le irstrength Usvalue acCX 3Cy CZ GACX GACY @TACZ  GUX Gy  gyrz angle predicted water level predicted turbidity

0 9%0 507242 1000 0384 2044 OA7B711 0947021 0147461 -0.465643 0465649 0274809 100 500 ow
0 1310 2990790 1024 0264 2044 0030088 0961670 -0.140625 0473082 0503817 0305344 50 3000 Tow
0 3460 2079210 1032 0192 2044 0046143 0964844 0143311 0458015 0480916 0267176 25 3000 low
0 740 2007200 089% 0260 2044 0130515 0955322 0145752 0473282 049%183 0274809 75 2000 ow
0 24630 997092 1160 0128 2044 0002441 0963238 0.1 5115 0488550 0258542 00 1000 low
0 70500 2985630 1064 0160 2044 0000577 066797 0.t 0495183 0290076 00 3000 ow
0 12290 509247 1048 0224 2044 0130371 0961426 0480916 025%42 75 500 Tow
0 2310 128850 1112 03% 2044 0139160 0948975 7 0488550 025542 75 500 ow
0 830 1486120 0928 0312 2044 0125244 0953613 0153564 0456015 0496183 0259542 75 1500 fow
0 4910 2488520 1000 0200 2044 0040283 0967041 0148193 0438550 0488550 0267176 25 2500 ow
0 1430 2007850 1056 0312 2044 0137635 0965332 013152 0519084 0503817 0267176 75 2000 ow
0 6300 1500450 1024 0328 2044 0131104 0951904 0151855 0473282 0519084 0267176 75 1500 Tow
0 1430 2004250 1032 0320 2044 0136%3 0956299 0146729 0488550 0511450 0251908 75 2000 ow
0 550 2494100 1048 0240 2044 0086182 0956543 50 0480916 0282443 50 2500 o
0 3040 1992020 1024 032 2008 0177246 0947266 5 80916 0282443 100 200 Tow
0 650 2993730 0976 0288 2044 0123535 0949463 0153076 0465649 0503817 0258542 75 3000 o
0 2800 2513780 1040 0240 2044 0078513 0955811 0139160 0503817 0496183 0274808 50 2500 ow
0  TM50 495375 1056 0248 2044 DOT2510 0970215 0140381 0671756 0419847 0267176 25 500 high
0 2870 2483790 1080 0240 2044 0086670 0963379 0147461 0511450 0503817 0282443 50 2500 fow
0 §70 198340 1040 0304 2044 0086914 0958384 -D149414 0473262 0480916 0267176 50 2000 ow
) 53680 498812 0992 0168 2044 0011963 0962646 0144775 0458015 0480916 0236641 00 00 high
0

65410 1498160 1080 0128 1952 0003174 0960938 -0.155029 0435115 0473282 0251908 00 1500 ow

The final output after the inputs is given to our model will be in the format as shown in the Figure 4.14, where the inputs are all displayed from
the left of the table and the final two columns of the table is the outputs according to the inputs, these outputs are labelled as water level and
turbidity. Based on the values of the inputs provided by the sensors the final water quality and water level is determined.

5. CONCLUSION

The implementation of an Automated Water Level Monitoring System using hybrid deep learning classifiers and regression models has
demonstrated the effectiveness of machine learning in real-time environmental monitoring. By integrating sensor data with predictive models,
the system provides accurate estimations of water levels and turbidity, which are crucial for flood prevention, water resource management, and
disaster mitigation. The Decision Tree Regressor, Random Forest Regressor, KNN Classifier, and MLP Classifier were utilized to enhance the
predictive capabilities of the system, ensuring reliable classification and forecasting. The correlation analysis and heatmaps provided deeper
insights into the relationships between different sensor inputs and water level variations, helping to refine the feature selection process. Despite
some limitations, such as occasional prediction discrepancies and computational requirements, the system outperforms traditional manual and
rule-based monitoring methods, making it a promising solution for smart water managementapplications.

The future scope of the project includes several key enhancements to improve its efficiency and scalability. First, integrating real-time 10T-
based data streaming with cloud-based storage and processing can enhance the system’s responsiveness, enabling continuous monitoring and
timely alerts. Additionally, advanced deep learning architectures such as CNN-LSTM can be explored to further enhance the accuracy of water
level and turbidity predictions. Another important area of improvement is edge computing, where models can be deployed on embedded
devices to enable localized decision-making, reducing reliance on centralized processing. Moreover, the system can be expanded to predict
extreme weather events by incorporating meteorological data, making it more robust for disaster risk management. Finally, collaboration with
governmental and environmental agencies can lead to large-scale deployment in urban and rural areas, ensuring proactive water resource
management and sustainable environmental practices.
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