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1. Introduction 

The design and development of urban drainage infrastructure relies heavily on modeling. It calls for a 

deep familiarity with fluid dynamics and the hydrologic behavior of the drainage region. Models in the 

fields of hydrology, hydraulics, and water quality do not provide faithful representations of the real-

world processes. Instead, they are approximations of real-world processes that are grounded in either 

observed data or a system of equations and parameters. Consequently, model calibrations are essential 

for achieving the desired level of accuracy in the model's output. An assortment of elements determine 

the uncertainty in the model's output (Freni et al., 2009; Gaume et al., 1998; Giudice et al., 2013; Saltelli 

et al., 1995; Urbonas, 2007). In modelling literature, numerous publications show that the importance of 

considering different sources of uncertainties during urban drainage infrastructure modelling (e.g. 

Bertrand-Krajewski et al., 2003; Kleidorfer et al., 2009b; Overeem et al., 2008), hydrology of natural 

catchments (e.g. Beven, 2007; Beven and Binley, 1992; Beven and Freer, 2001; Carpenter and 

Georgakakos, 2004; Engeland et al., 2005; Fang, T and Ball, JE, 2007; Kavetski et al., 2006a), 

stormwater quality modelling (e.g. Bertrand- Krajewski et al., 2002; Dotto et al., 2009; Haydon and 

Deletic, 2009; Kanso et al., 2005; Kleidorfer et al., 2009a; Lindblom et al., 2007), rainfall/runoff 

modelling (e.g. Lei, 1996; Lei and Schilling, 1996), integrated modelling (e.g. Freni et al., 2009a; 

Harremoës, 2003; Hoppe and Gruening, 2007; Mannina et al., 2006) and urban drainage modelling (e.g. 

Arnbjerg-Nielsen and Harremoës, 1996; Deletic et al., 2009; Kleidorfer et al., 2009a; Korving and 

Clemens, 2005; Rauch et al., 1998b; Thorndahl, 2008; Thorndahl et al., 2008).  

The characteristics of model parameters can be examined by applying a Bayesian approach (Markov-chain Monte Carlo 

Simulation). It has the advantage of not only getting one "best parameter set", but also a distribution of the most likely values of 

the model parameters (Mailhot et al., 1997; Kuczera and Parent, 1998; Kanso et al., 2003; Kuczera et al., 2006), that enables us 

to recognize „the most‟ and „the least‟ important calibration parameters of a model. 

 

There are also a number of tools that can be used in sensitivity analyses of model parameters, which constructs the probability 

distribution function (PDF) of model parameters using the Markov chain Metropolis-Hastings approach (Doherty, 2003, 

Metropolis et al., 1953; Hastings, 1970). This kind of approach has already been used by different researchers and consulting 

companies to examine parameter sensitivity of stormwater models (e.g. Kanso et al, 2003). Model parameters are not the only 

source of uncertainties in our models. Input data uncertainties have been also recognized as key problem in accurate modeling 

(Hoppe & Gruening 2007). Recently estimate shows that the influence of uncertainties in the input data already exceeds the 

effect of error due to observed data. Much work has been done on propagation of these uncertainties through different model 

frameworks. Recently, a new framework called total error was proposed by Kuczera et al., 2006 indicating all sources of 

uncertainties should be propagated at the same time, since they can compensate for each other. However, this approach, has only 

been tested on flow models in non-urban watershed. The methodology is rather complex, and is yet to be tested for water quality 

or urban stormwater models. (e.g. Bertrand- Krajewski et al., 2003; Haydon and Deletic, submitted; Kavetski et al., 2006; 

Korving and Clemens, 2005; Kuczera 

et al., 2006; Lei, 1996; Rauch et al., 1998).  
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2. Model Uncertainty 

Uncertainty is natural in any modelling process and originates from a wide range of sources, ranging from model formulation to 

the collection of required data. Uncertainties cannot be eliminated, and therefore it is necessary to understand their sources and 

consequences for model results. However, at least the confidence level of a model‟s predictions should be included in every 

modelling application of drainage infrastructure design. As pointed out by Beven (2006) there are many sources of uncertainty 

that interact non-linearly in the modelling process. Nevertheless, it should be mentioned that not all uncertainty sources 

can be 

„quantified‟, and that the fraction of uncertainty sources being 

„ignored‟ might be high in environmental investigations (Harremoës, 2003; Thorndahl, et al. 2008). For instance there are many 

causes why designers may have poor match to observed values in urban drainage infrastructure modeling results:- 

 

Rainfall: - How big is your watershed? More often than not, the characterization of the rainfall in the basin is where the largest 

error is. The author would argue that unless we have both rainfall gages and Doppler radar reflectivity data for modeling event, 

we will have very large uncertainties regarding the rainfall temporal and spatial pattern of the watershed for validation events. 

This is likely to be one of model user largest problem. 

 

Time of Concentration: - Travel time of runoff from the watershed during an infrequent event will have different characteristics 

in comparison to a smaller more frequent event. This is because larger events produce higher flow rates with larger velocities in 

the stream reaches in comparison to smaller events. If the modelers are not using a velocity based method and assuming that Tc 

is the same for all events that will be also a source of error. 

 

Spatially Variable Infiltration/Interception Characteristics:- This can be describe as how well do the modeler understand the 

variability in the watershed characteristics for soils, vegetative cover, vegetative cover density, land use, depression storage, etc. 

below, table-1 shows some of the example of frequently used formulas and possible sources of uncertainty that can affect the 

modeling output. 

 

Table 1: Example of Frequently Used Formulas and Possible Sources of Uncertainty That Can Affect the Modeling OutputWhen 

dealing with complex urban drainage models, calibration may lead to several equally plausible parameters sets, reducing 

confidence in the modelled results (Kuczera & Parent, 1998) 

 

The concept that a unique parameter set exists should be replaced by the equifinality concept (Beven, 2006), which states that 

more than one parameter set may be able to provide a good fit between simulated and measured data. Many published studies 

have dealt with the impact of uncertainties in model parameters, also known as sensitivity analysis (Dotto et al., in press; Kanso 

et al., 2003; Thorndahl et al., 2008; Umakhanthan, K and Ball, JE, 2002). Some use the results of a model sensitivity analysis to 

produce parameter Probability Distributions (PDs) which reflect how sensitive the model outputs are to each parameter, while 

others just use the result to screen parameters. Others use the model sensitivity results to estimate confidence intervals around a 

model‟s prediction. Impacts of input data uncertainties on urban drainage modelling are far less understood, although their 
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importance is widely studied in other areas (Kuczera et al., 2006). For example, the impact of systematic rainfall uncertainties 

on the performance of non- urban catchment models are recognized (e.g. Haydon & Deletic, 2009). Some work has been done 

on the propagation of input data uncertainties through urban drainage models (Bertrand-Krajewski et al., 2003; Korving & 

Clemens, 2005; Rauch et al., 1998). Deletic et al. 2009) classify uncertainties related to urban drainage modelling in a bit 

different way as described in table-2 below: 

 
Uncert ainties Related To Urban Drainage Mo delling 

Model input uncertainties related Calibration uncertainties related Model structure uncertainties related 

Measured input data Measured calibration data uncertainties Conceptualization errors 

Estimated input data 
Measured calibration data availability 
and choices 

Numerical methods and boundary 
conditions 

Model parameters Calibration Algorithms  

Professional skills Criteria Functions  

Table 2: The General Classification of Model Output Uncertainties Related to Urban Drainage Simulation 

 

3. Model Calibration 

Model calibration is the process of estimating the values of the model parameters so that the model responses satisfactorily 

simulate the behavior of the modelled system. This process is also called “model optimization”, because its scope is the reduction 

of the model error. It is also defined as “inverse modelling”, since the observations of the model outputs are used to estimate the 

parameter values, as opposed to direct modelling, in which fixed parameter values are used to estimate the model outputs (Beck 

1987; Choi, KS and Ball, JE, 2002; Willmot, 1881). 

 

The process of model calibration involves changing the estimated input variables so that the output variables match well with 

observed results under similar conditions. The process of checking the model against actual data can vary greatly in complexity, 

depending on the confidence needed and the amount of data available. In some cases, the only feasible or necessary action may 

be a simple “reality check,” using one or two data points to verify that the model is at least 

 

providing results that fall within the proper range. In other cases, it may be necessary to perform a detailed model calibration,  
Whereare the averages of observed and 
model goodness-of-fit is judged by the modeler by visual comparison of the simulated responses with the observed variables 

and/or using classical mathematical measures of model performance such as the root mean squared error, the correlation 

coefficient and similar (see equation 1-6). Manual calibration method has the disadvantages of being time consuming, and 

required high degree of expert knowledge of the model as well as the system. Automatic calibration is more effective and efficient 

procedures and is based on numerical optimization methods (Ball, JE, 2009, Bertrand et al. 2003, Korving, & Clemens, 

2005).simulated measurements at space-time point n, calculated from all available data (observation and multiple simulation run). 

These two statistics are most useful when applied separately to measurements at each time–space point rather than to all 

measurements jointly. This way they provide insight to the spatial and temporal distribution of errors and help identify 

deficiencies in the model. 

 

Another measure that provides information on the relative error are the Coefficient of Determination (r2), and Nash- Sutcliffe 

efficiency (NSE) 

4. Statistical Model Validation 

The general simulation literature includes a large number of for the statistical validation of simulation models. 
efficiency of lower than zero indicates that the mean value of the observed time series would have been a better predictor than 

the model. 

 

5. Model Accuracy 

6. In spite of improvements in models, model interfaces, and model math engines, accurately and reliably 

modeling stormwater runoff (i.e. hydrology and hydraulics) and related phenomena remains a challenge 

(Freni et al. 2009, Gaume et al. 1998, Nix, 1994). Computer models are being used for planning, 

designing, maintaining, and making decisions on massive drainage infrastructure projects that are worth 

billions of dollars (Giudice, et al. 2013, Urbonas, 2007). The author and many of his colleagues 

acknowledged that while most models include some degree of uncertainty, there are several important 

factors that contribute to this uncertainty in urban infrastructure drainage design models. These include 

the expertise of the user or modeler, the difficulty in choosing the right model, the availability of reliable 

calibration data, and many more (Bertrand k. and Bardin, J. P. 2002; Frey, H. C. and Rhodes, D. S. 

1998; Helge, D. 2006; Omlin, M. (2000); Reichert, P. and Borsuk, M. E. 2005). In addition, there is a 
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lack of data on the following: how accurate and dependable are the output results? Where does 

uncertainty come from, and how big is it? Uncertainty in model outputs: how to mitigate it? When less 

experienced experts are engaged in the modeling and analysis of the results, there are issues with the 

accuracy of the models. Do people who use models want their models to be accurate and calibrated? It is 

common practice to compare the model's outputs to the chosen observations for validation and 

calibration in order to ascertain the model's accuracy.  
 

7. Types of Urban Drainage Models General 

Modeling in urban drainage system serves various purposes such as the overall assessment of drainage area response as a part of 

strategic and master planning to the detailed network and providing necessary support to primary activities such as elements 

design, assessment of pollution, operational management, real time control and analysis of interactions among sub-systems. The 

type of model applied depends on the goal of Modeling, spatial coverage, data and technology availability. There are a number 

of empirical hydrologic methods that can be used to estimate runoff characteristics for the drainage areas. The most commonly 

used stormwater models can generally be classified as either hydrologic, hydraulic, or water quality models (Giudice, et al. 2013, 

Gironás, et al. 2010, McColl, & Aggett, 2007, Saltelli, et al. 1995, Umakhanthan, K and Ball, JE, 2005, Zarriello, 1998) and, the 

general description of those models are as follows:- 

 

Hydrologic models: - are models used to simulate runoff volumes, peak flows, and the temporal distribution of runoff at a 

particular location resulting from a given precipitation of an event. Hydrologic models are also used to simulate how the drainage 

area parameters will cause runoff either to flow relatively unhindered through the system to a point of interest, or to design a 

detention or retention system to route runoff hydrographs through storage areas or channels (Looper, et al. 

 

2012, McColl, & Aggett, 2007, Melching, et al. 1990, Nix, 1994). 

 

Hydraulic models:- are models used to simulate the water surface elevations (HGL), energy grade lines, flow rates, velocities, 

pipe size and other flow characteristics throughout a drainage network that result from a given runoff hydrograph or steady flow 

input. The hydraulic model also used for various computational routines such as to route the runoff through the drainage network, 

which may include channels, pipes, control structures, and storage areas (Mannina & Viviani, 2010, Thorndahl, et al. 2008, 

Urbonas, 2007). 

 

Water quality models: - are models used to evaluate the effectiveness of an agency recommended best management practices 

(BMPs), simulate water quality conditions in a lake, stream, or wetland, and to estimate the loadings to water bodies. Often the 

goal is to evaluate how some external factor (such as a change in land use or land cover, the use of best management practices 

(BMPs), or a change in lake internal loading) will affect water quality. Parameters that are frequently modeled include total 

phosphorus, total suspended solids, and dissolved oxygen (Gironás, et al. 2010, Mailhot, et al. 1997, Mannina, & Viviani, 2010, 

Vaze, & Chiew 2003). 

 

8. Selection of Appropriate Design Model 

Models are range from very basic tools with minimal data input requirement, to complex tools that require expertise. In general, 

the selection of appropriate urban drainage infrastructure models are depends on a number of factors (Mailhot, et al. 1997, 

Saltelli, et al. 1995, Urbonas, 2007, Zarriello, 1998). Including:- 

 

Desired output (outflow hydrograph, peak runoff rate and volume, pollutant removal, infiltration loss, etc.):- some models can 

be used to estimates peak runoff rates, but cannot be used to simulate total runoff volumes (Rational Method). In the contrary, 

other methods can only estimates total runoff volumes. While others, such as the natural resources conservation service (NRCS) 

model for example, can be used to simulate both total runoff volume and peak rate, and runoff hydrographs. 

 

Scale of project and Drainage Area Size: -because of their assumptions and/or theoretical basis, some models can only use to 

simulate runoff volumes or rates for drainage areas less than 20 acres, while other methods can be applied for a larger drainage 

area of 20 square miles or more 9 (Vaze, & Chiew 2003). 

 

The availability of various model input parameters (soil type, topographic etc): - Simple models, such as the modified rational 

methods, require basic data such as rainfall intensity, runoff coefficient and drainage area, while other, more sophisticated 

methods have extensive data requirement, including long-term rainfall and temperature data etc. 

 

Level of professional expertise required to perform modeling: 
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- the level of expertise required to perform modeling is the most important factor for both theoretical and practical reasons, 

compare to less trained professionals in knowledge, 

model output analysis, decision-making, and a range of other capabilities. 

 

9. Demonstration Case Study 

To demonstrate the project area of this study is located in Astoria Heights more commonly called “Upper Ditmars" a district of 

the New York City borough of Queens. The study total area is approximately 8.2 ha. Fig.-1 and 2 below shows the general 

location and drainage map of the study area. 
 

Figure 1: General Location of Study Area 

10. Methods and Modeling Approach 

Analyzing the configuration of the drainage networks including existing stormwater drainage network; existing stormwater 

storage and peak flow reduction facilities; and sub-basin drainage delineation was the first stage of the modeling approaches; 

followed by defining model scenarios and hydrologic characteristics identification such as land use, soil, and roughness 

coefficient applied for the modeled sub- basins. With the same rainfall event applied to each scenario, the resulting stormwater 

performance could be compared for the various campus conditions and measured against designated benchmarks. The runoff 

curve number method was selected for infiltration modeling as the CN values (primary parameter for the curve number method) 

can be determined more readily, compared to Horton or Green-Ampt parameters, from the land cover and soil maps available for 

the watershed. 

 

Computer-based SWMM modeling software with Geographic Information System (GIS) add on was used so that land uses and 

vicinity map locations on the project area were spatially referenced within the modeling environment. Pipes, nodes, and 

stormwater storage components were input into the model as point and line features with the attributes (i.e. inverts, sizes, and 

geometry) populated using record drawings that were obtained from previous projects. 

 

The research model calibration involves the adjustment of the primary drainage network model parameters and changing the 

estimated input variables so that the model output match well or fall within the proper range of observed results (i.e. observed 

peak flow and water surface elevation data) under similar conditions before and after Model calibration. The study total drainage 

area is divided into six sub-drainageareas with 97 % impervious. For simulation purpose, the 10 year 24hr rainfall event in 

accordance with the NYSDOT Highway Design Manual is used. The existing storm runoff is conveyed via a road side curve and 

gutters through 315mm, 450mm, 560mm, 900mm and 1600mm (12”, 18”, 22”, 36 and 

66”) concert pipes. 

 

11. Calibration Strategies 

The calibration process adopted for this study involves adjustment of the primary model parameters until the model results of 

peak flow and water surface elevations at each junction point approximately close to the actual observed value as designed under 
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similar condition. After the model result and the observed values are in reasonable agreement, and identify which parameters 

have the most significant impact on the model result output, and thereby identify potential parameters for subsequent final fine 

tuning through micro-level calibration. 

 

12. Calibration Parameters 

For calibration and model output uncertainty analysis a total of 11 SWMM-5 runoff parameters were considered. The values of 

these parameters are varying from sub-area to sub- area depending on soil, land use, imperviousness, topography and/or other 

characteristics of the total drainage area. The values of these parameters for each sub-area have been taken from the existing 

drawing and maps obtain from the department of design and construction NYC. Table -1 indicates some of the representative 

design formulas and Calibration Parameters used that passible affect the modeling output. 

 

13. Sensitivity Analysis 

The problem in calibration of models is the large number of parameters. For this reason, methods for reducing the number of 

parameters in the course of sensitivity analysis are very important (Mailhot, et al. 1997, McCuen 2005, Melching, et al. 1990, 

Van Griensven, et al. 2006). The main target of sensitivity analysis is to detect insensitive parameters and to exclude them from 

the calibration process. In this study the analysis has been accomplished by varying different model parameters by different 

amounts so that the model output match well or fall within the proper range of the observed results (Savic, & Walters, 1995, 

Sun, et al. 2014, Thorndahl, et al. 2008). 

 

14. Result Analysis 

Generally, the goal of urban drainage infrastructure system modeling is to provide a reasonable prediction of the way the 

catchment area considered for design will respond to a given set of conditions. Recognizing the high degree of error or 

uncertainty in many aspects of modeling can help the efforts to encourage model users to pursue accuracy and model calibration. 

The modeling goal may be to precisely predict this response or to compare the relative difference in response between different 

numbers of scenarios. Therefore, the best way to verify that a model fulfills this need to the required degree of accuracy is to 

check it against actual monitoring 

data or observations. 

 

This paper illustrated a basic practical approach and relatively simple to implement for urban drainage infrastructure model 

calibration to minimize output uncertainty, which can be used but ignored during storm water simulation and analysis using 

Astoria-Heights watershed, a heavily urbanized area located in New York City. For comparison purpose, the following values 

were simulated and analyzed: 

 

I. The peak flow with the best fitted calibrated model of the mean flow of 0.33m3/s or 11.63 cfs (measured 0.32m3/s or 11.44cfs) 

and a peak flow of 0.47m3/s or 16.59 cfs (measured 0.46m3/s or 16.42 cfs) with standard deviation of 2.9 calibrated (2.85 

measured) and correlation between measured calibrated 99.6%. Calibration runs was confirmed by the inspection of the 

resulting ranges in parameter values and in model output. Table-3 shows a summary of measured, calibrated, and un-

calibrated model output statistical analysis. 

 

Table 3: Summary of Measured, Calibrated and Un- calibrated Model Output Runoff in cfs Statistical Analysis for 10 yrs. 24hr 

Storm Runoff 
 Runoff Uncalibrated and Calibrated Model Comparison 
 Measured Uncalibrated model Calibrated model 

Max 16.42 13.55 16.59 

Mean 11.44 10.04 11.63 

SD. 2.85 2.07 2.9 

Variance 8.12 4.24 8.41 

Corrolation  70.00% 99.61% 
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Figure 2: Un calibrated Model Result of Measured vs Modeled Output Value of Peak Flow (cfs) 

 
Figure 3: Celebrated Model Result of Measured Vs Modeled Output Value of Peak Flow (cfs) 

 

II. Relative water surface elevation (HGL) also simulated with the best fitted calibrated model of a mean HGL of 

27.97m or 91.75ft. (Measured 27.90m or 91.52ft),and a max of water surface elevation (HGL) 30.63m or 100.49 ft. 

(measured30.626m or 100.48 ft.) with standard deviation of 6.504 calibrated (6.503 measured) and correlation between 

measured calibrated is almost 100%. Calibration runs was confirmed by the inspection of the resulting ranges in parameter 

values and in model output. Table-4 shows a summary of measured and calibrated and uncalibrated model output statistical 

analysis for water surface elevation. 

 

Table 4: Summary of Measured, Calibrated and Un calibrated Model Output Statistical Analysis for 10 yrs. 24hr Storm 

Water Surface Elevation (HGL in ft.) 
 

 HGL Uncalibrated and Calibrated Model Comparison 
 Measured Uncalibrated model Calibrated model 

Max 100.48 100.30 100.49 

Mean 91.75 89.90 91.75 

SD. 6.503 5.640 6.504 

Variance 42.29 31.78 42.30 

Corrolation  93.00% 99.00% 

 

Figure 4: Un calibrated Model Result of Measured vs Modeled Output Value of water surface Elevation (HGL in ft.) 
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Figure 5: Celebrated Model Result of Measured vs Modeled Output Value of water surface Elevation (HGL in ft.) 

 

15. Conclusions 

In conclusion, incorporating what is known about the uncertainty into input parameters and variables used in optimization and 

simulation models can help in quantifying and minimizing the uncertainty in the resulting model predictions of the model output. 

This case study demonstrated that it is very crucial to establish model output calibration standards before preceding the final 

design stage of any urban drainage infrastructure. Finally, the author recommends model users to pursue accuracy and model 

calibration during drainage network analysis and simulation for reliability model output result. 
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