5 Years Impact Factor: 1.53
Author: Varsha, Karanam Harish ,T.Nivesh Reddy , K. Surya Kanthi
Abstract:
The era of the Industrial Internet of Things has led to an escalating menace of cyber–physical manufacturing systems (CPMSs) to cyber-attacks. Presently, the field of intrusion detection for CPMS has significant advancements. However, current methodologies require significant costs for collecting historical data to train detection models, which are tailored to specific machining scenarios. Evolving machining scenarios in the real world challenge the adaptability of these methods. In this article, We found that the machining code of the CPMS contains a complete machining process, which is an excellent detection basis. Therefore, we propose MPI-CNC, an intrusion detection approach based on Machining Process Invariant in the machining code. Specifically, MPI-CNC automates the analysis of the machining codes to extract machining process rules and key parameter rules, which serve as essential detection rules. Then, MPI-CNC actively acquires runtime status from the CPMS and ma
Download PDF